fbpx
Learn to build large language model applications: vector databases, langchain, fine tuning and prompt engineering. Learn more

llm

Retrieval augmented generation (RAG) has improved the function of large language models (LLM). It empowers generative AI to create more coherent and contextually relevant content. Let’s take a deeper look into understanding RAG.

 

What is retrieval augmented generation?

 

It is an AI framework and a type of natural language processing (NLP) model that enables the retrieval of information from an external knowledge base. It integrates retrieval-based and generation-based approaches to provide a robust database for LLMs.

 

A retrieval augmented generation model accesses a large pre-existing pool of knowledge to improve the quality of LLM-generated responses. It ensures that the information is more accurate and up-to-date by combining factual data with contextually relevant information.

 

By combining vector databases and LLM, the retrieval model has set up a standard for the search and navigation of data for generative AI. It has become one of the most used techniques for LLM.

 

retrieval augmented generation
An example illustrating retrieval augmentation – Source: LinkedIn

 

Benefits of RAG

While retrieval augmented generation improves LLM responses, it offers multiple benefits to the generative AI efforts of an organization.

Explore RAG and its benefits, trade-offs, use cases, and enterprise adoption, in detail with our podcast! 

Improved contextual awareness

 

The retrieval component allows access to a large knowledge base, enabling the model to generate contextually relevant information. Due to improved awareness of the context, the output generated is more coherent and appropriate.

 

Enhanced accuracy

 

An LLM using a retrieval model can produce accurate results with proper attribution, including citations of relevant sources. Access to a large and accurate database ensures that factually correct results are generated.

 

Adaptability to dynamic knowledge

 

The knowledge base of a retrieval model is regularly updated to ensure access to the latest information. The system integrates new information without retraining the entire program, ensuring quick adaptability. It enables the generative models to access the latest statistics and research.

 

Resource efficiency

 

Retrieval mechanisms enable the model to retrieve information from a large information base. The contextual relevance of the data enhances the accuracy of the results, making the process resource-efficient. It makes handling of large data volumes easier and makes the system cost-efficient.

 

Increased developer control

 

Developers use a retrieval augmented generation model to control the information base of a LLM. They can adapt the data to the changing needs of the user. Moreover, they can also restrict the accessibility of the knowledge base, giving them control of data authorization.

 

Large language model bootcamp

 

Frameworks for retrieval augmented generation

 

A RAG system combines a retrieval model with a generation model. Developers use frameworks and libraries available online to implement the required retrieval system. Let’s take a look at some of the common resources used for it.

 

Hugging face transformers

 

It is a popular library of pre-trained models for different tasks. It includes retrieval models like Dense Passage Retrieval (DPR) and generation models like GPT. The transformer allows the integration of these systems to generate a unified retrieval augmented generation model.

 

Facebook AI similarity search (FAISS)

 

FAISS is used for similarity search and clustering dense vectors. It plays a crucial role in building retrieval components of a system. Its use is preferred in models where vector similarity is crucial for the system.

 

PyTorch and TensorFlow

 

These are commonly used deep learning frameworks that offer immense flexibility in building RAG models. They enable the developers to create retrieval and generation models separately. Both models can then be integrated into a larger framework to develop a RAG model.

 

Haystack

 

It is a Python framework that is built on Elasticsearch. It is suitable to build end-to-end conversational AI systems. The components of the framework are used for storage of information, retrieval models, and generation models.

 

Learn to build LLM applications

 

Use cases of RAG

 

Some common use cases and real-world applications are listed below.

Content creation

 

It primarily deals with writing articles and blogs. It is one of the most common uses of LLM where the retrieval models are used to generate coherent and relevant content. It can lead to personalized results for users that include real-time trends and relevant contextual information.

 

Real-time commentary

 

A retriever uses APIs to connect real-time information updates with an LLM. It is used to create a virtual commentator which can be integrated further to create text-to-speech models. IBM used this mechanism during the US Open 2023 for live commentary.

 

Question answering system

 

question answering through retrieval augmented generation
Question answering through retrieval augmented generation – Source: Medium

 

The ability of LLMs to generate contextually relevant content enables the retrieval model to function as a question-answering machine. It can retrieve factual information from an extensive knowledge base to create a comprehensive answer.

 

Language translation

 

Translation is a tricky process. A retrieval model can detect the context of phrases and words, enabling the generation of relevant translations. Access to external databases ensures the results are accurate and fluent for the users. The extensive information on available idioms and phrases in multiple languages ensures this use case of the retrieval model.

 

Educational assistance

 

The application of a retrieval model in the educational arena is an extension of question answering systems. It uses the said system, particularly for educational queries of users. In answering questions and generating academic content, the system can create more comprehensive results with contextually relevant information.

 

 

Future of RAG

 

The integration of retrieval and generation models in LLM is expected to grow in the future. The current trends indicate their increasing use in technological applications. Some common areas of future development of RAG include:

 

  • Improved architecture – the development of retrieval and generation models will result in the innovation of neural network architectures

 

  • Enhanced conversational agents – improved adaptation of knowledge base into retrieval model databases will result in more sophisticated conversational agents that can adapt to domain-specific information in an improved manner

 

  • Integration with multimodal information – including different types of information, including images and audio, can result in contextually rich responses that encompass a diverse range of media

 

  • Increased focus on ethical concerns – since data privacy and ethics are becoming increasingly important in today’s digital world, the retrieval models will also focus more on mitigating biases and ethical concerns from the development systems

 

 

Hence, retrieval augmented generation is an important aspect of large language models within the arena of generative AI. It has improved the overall content processing and promises an improved architecture of LLMs in the future.

January 31, 2024

Traditional databases in healthcare struggle to grasp the complex relationships between patients and their clinical histories. This limitation hinders personalized medicine and hampers rapid diagnosis. Vector databases, with their ability to store and query high-dimensional patient data, emerge as a revolutionary solution.

This blog delves into the technical details of how AI in healthcare empowers patient similarity searches and paves the path for precision medicine.

Impact of AI on healthcare

The healthcare landscape is brimming with data such as demographics, medical records, lab results, imaging scans, – the list goes on. While these large datasets hold immense potential for personalized medicine and groundbreaking discoveries, traditional relational databases cannot store such high-dimensional data at a large scale and often fall short.

Their rigid structure struggles to represent the intricate connections and nuances inherent in patient data.

Vector databases are revolutionizing healthcare data management. Unlike traditional, table-like structures, they excel at handling the intricate, multi-dimensional nature of patient information.

Each patient becomes a unique point in a high-dimensional space, defined by their genetic markers, lab values, and medical history. This dense representation unlocks powerful capabilities discussed later.

Working with vector data is tough because regular databases, which usually handle one piece of information at a time, can’t handle the complexity and large amount of this type of data. This makes it hard to find important information and analyze it quickly.

That’s where vector databases come in handy—they are made on purpose to handle this special kind of data. They give you the speed, ability to grow, and flexibility you need to get the most out of your data.

 

how vector databases work
Understand the functionality of vector databases – Source: kdb.ai

 

Patient similarity search with vector databases in healthcare

The magic lies in the ability to perform a similarity search. By calculating the distance between patient vectors, we can identify individuals with similar clinical profiles. This opens a large span of possibilities.

Personalized treatment plans

By uncovering patients with comparable profiles and treatment outcomes, doctors can tailor interventions with greater confidence and optimize individual care. It also serves as handy for medical researchers to look for efficient cures or preventions for a disease diagnosed over multiple patients by analyzing their data, particularly for a certain period. 

Here’s how vector databases transform treatment plans:

  • Precise Targeting: By comparing a patient’s vector to those of others who have responded well to specific treatments, doctors can identify the most promising options with laser-like accuracy. This reduces the guesswork and minimizes the risk of ineffective therapies.
  • Predictive Insights: Vector databases enable researchers to analyze the trajectories of similar patients, predicting their potential responses to different treatments. This foresight empowers doctors to tailor interventions, preventing complications and optimizing outcomes proactively.
  • Unlocking Untapped Potential: By uncovering hidden connections between seemingly disparate data points, vector databases can reveal new therapeutic targets and treatment possibilities. This opens doors for personalized medicine breakthroughs that were previously unimaginable.
  • Dynamic Adaptation: As a patient’s health evolves, their vector map shifts and readjusts accordingly. This allows for real-time monitoring and continuous refinement of treatment plans, ensuring the best possible care at every stage of the journey.

 

Large language model bootcamp

 

Drug discovery and repurposing

Identifying patients similar to those successfully treated with a specific drug can accelerate clinical trials and uncover unexpected connections for existing medications.

  • Accelerated exploration: They transform complex drug and disease data into dense vectors, allowing for rapid similarity searches and the identification of promising drug candidates. Imagine sifting through millions of molecules at a single glance, pinpointing those with similar properties to known effective drugs.
  • Repurposing potential: Vector databases can unearth hidden connections between existing drugs and potential new applications. By comparing drug vectors to disease vectors, they can reveal unexpected repurposing opportunities, offering a faster and cheaper path to new treatments. 
  • Personalization insights: By weaving genetic and patient data into the drug discovery tapestry, vector databases can inform the development of personalized medications tailored to individual needs and responses. This opens the door to a future where treatments are as unique as the patients themselves. 
  • Predictive power: Analyzing the molecular dance within the vector space can unveil potential side effects and predict drug efficacy before entering clinical trials. This helps navigate the treacherous waters of development, saving time and resources while prioritizing promising candidates. 

Cohort analysis in research

Grouping patients with similar characteristics facilitates targeted research efforts, leading to faster breakthroughs in disease understanding and treatment development.

  • Exploring Disease Mechanisms: Vector databases facilitate the identification of patient clusters that share similar disease progression patterns. This can shed light on underlying disease mechanisms and guide the development of novel diagnostic markers and therapeutic target 
  • Unveiling Hidden Patterns: Vector databases excel at similarity search, enabling researchers to pinpoint patients with similar clinical trajectories, even if they don’t share the same diagnosis or traditional risk factors. This reveals hidden patterns that might have been overlooked in traditional data analysis methods.

 

Learn to build LLM applications

 

Technicalities of vector databases

Using a vector database enables the incorporation of advanced functionalities into our artificial intelligence, such as semantic information retrieval and long-term memory. The diagram provided below enhances our comprehension of the significance of vector databases in such applications.

 

query result using vector healthcare databases
Role of vector databases in information retrieval – Source: pinecone.io

 

Let’s break down the illustrated process:

  • Initially, we employ the embedding model to generate vector embeddings for the content intended for indexing.
  • The resulting vector embedding is then placed into the vector database, referencing the original content from which the embedding was derived. 
  • Upon receiving a query from the application, we utilize the same embedding model to create embeddings for the query. These query embeddings are subsequently used to search the database for similar vector embeddings. As previously noted, these analogous embeddings are linked to the initial content from which they were created.

In comparison to the working of a traditional database, where data is stored as common data types like string, integer, date, etc. Users query the data by comparison with each row; the result of this query is the rows where the condition of the query is withheld.

In vector databases, this process of querying is more optimized and efficient with the use of a similarity metric for searching the most similar vector to our query. The search involves a combination of various algorithms, like approximate nearest neighbor optimization, which uses hashing, quantization, and graph-based detection.

Here are a few key components of the discussed process described below:

  • Feature engineering: Transforming raw clinical data into meaningful numerical representations suitable for vector space. This may involve techniques like natural language processing for medical records or dimensionality reduction for complex biomolecular data. 
  • Distance metrics: Choosing the appropriate distance metric to calculate the similarity between patient vectors. Popular options include Euclidean distance, cosine similarity, and Manhattan distance, each capturing different aspects of the data relationships.

 

distance metrics to calculate similarity in vector databases
Distance metrics to calculate similarity – Source: Camelot

 

    • Cosine Similarity: Calculates the cosine of the angle between two vectors in a vector space. It varies from -1 to 1, with 1 indicating identical vectors, 0 denoting orthogonal vectors, and -1 representing diametrically opposed vectors.
    • Euclidean Distance: Measures the straight-line distance between two vectors in a vector space. It ranges from 0 to infinity, where 0 signifies identical vectors and larger values indicate increasing dissimilarity between vectors.
    • Dot Product: Evaluate the product of the magnitudes of two vectors and the cosine of the angle between them. Its range is from -∞ to ∞, with a positive value indicating vectors pointing in the same direction, 0 representing orthogonal vectors, and a negative value signifying vectors pointing in opposite directions. 
  • Nearest neighbor search algorithms: Efficiently retrieving the closest patient vectors to a given query. Techniques like k-nearest neighbors (kNN) and Annoy trees excel in this area, enabling rapid identification of similar patients.

 

A general pipeline from storing vectors to querying them is shown in the figure below:

 

pipeline for vector database
Pipeline for vector database – Source: pinecone.io

 

  • Indexing: The vector database utilizes algorithms like PQ, LSH, or HNSW (detailed below) to index vectors. This process involves mapping vectors to a data structure that enhances search speed. 
  • Querying: The vector database examines the indexed query vector against the dataset’s indexed vectors, identifying the nearest neighbors based on a similarity metric employed by that specific index. 
  • Post Processing: In certain instances, the vector database retrieves the ultimate nearest neighbors from the dataset and undergoes post-processing to deliver the final results. This step may involve re-evaluating the nearest neighbors using an alternative similarity measure.

Challenges and considerations

While vector databases offer immense potential, challenges remain:

  • Data privacy and security: Safeguarding patient data while harnessing its potential for enhanced healthcare outcomes requires the implementation of robust security protocols and careful consideration of ethical standards.

This involves establishing comprehensive measures to protect sensitive information, ensuring secure storage, and implementing stringent access controls.

Additionally, ethical considerations play a pivotal role, emphasizing the importance of transparent data handling practices, informed consent procedures, and adherence to privacy regulations. As healthcare organizations leverage the power of data to advance patient care, a meticulous approach to security and ethics becomes paramount to fostering trust and upholding the integrity of the healthcare ecosystem. 

  • Explainability and interpretability: Gaining insight into the reasons behind patient similarity is essential for informed clinical decision-making. It is crucial to develop transparent models that not only analyze the “why” behind these similarities but also offer insights into the importance of features within the vector space.

This transparency ensures a comprehensive understanding of the factors influencing patient similarities, contributing to more effective and reasoned clinical decisions. Integration with existing infrastructure: Seamless integration with legacy healthcare systems is essential for the practical adoption of vector database technology.

 

 

Revolution of medicine – AI in healthcare

In summary, the integration of vector databases in healthcare is revolutionizing patient care and diagnostics. Overcoming the limitations of traditional systems, these databases enable efficient handling of complex patient data, leading to precise treatment plans, accelerated drug discovery, and enhanced research capabilities.

While the technical aspects showcase the sophistication of these systems, challenges such as data privacy and seamless integration with existing infrastructure need attention. Despite these hurdles, the potential benefits promise a significant impact on personalized medicine and improved healthcare outcomes.

January 30, 2024

Large language models (LLMs) are a fascinating aspect of machine learning.

Regarding selective prediction in large language models, it refers to the model’s ability to generate specific predictions or responses based on the given input.

This means that the model can focus on certain aspects of the input text to make more relevant or context-specific predictions. For example, if asked a question, the model will selectively predict an answer relevant to that question, ignoring unrelated information.

 

They function by employing deep learning techniques and analyzing vast datasets of text. Here’s a simple breakdown of how they work:

  1. Architecture: LLMs use a transformer architecture, which is highly effective in handling sequential data like language. This architecture allows the model to consider the context of each word in a sentence, enabling more accurate predictions and the generation of text.
  2. Training: They are trained on enormous amounts of text data. During this process, the model learns patterns, structures, and nuances of human language. This training involves predicting the next word in a sentence or filling in missing words, thereby understanding language syntax and semantics.
  3. Capabilities: Once trained, LLMs can perform a variety of tasks such as translation, summarization, question answering, and content generation. They can understand and generate text in a way that is remarkably similar to human language.

 

Learn to build LLM applications

 

How selective predictions work in LLMs

Selective prediction in the context of large language models (LLMs) is a technique aimed at enhancing the reliability and accuracy of the model’s outputs. Here’s how it works in detail:

  1. Decision to Predict or Abstain: At its core, selective prediction involves the model making a choice about whether to make a prediction or to abstain from doing so. This decision is based on the model’s confidence in its ability to provide a correct or relevant answer.
  2. Improving Reliability: By allowing LLMs to abstain from making predictions in cases where they are unsure, selective prediction improves the overall reliability of the model. This is crucial in applications where providing incorrect information can have serious consequences.
  3. Self-Evaluation: Some selective prediction techniques involve self-evaluation mechanisms. These allow the model to assess its own predictions and decide whether they are likely to be accurate or not. For example, experiments with models like PaLM-2 and GPT-3 have shown that self-evaluation-based scores can improve accuracy and correlation with correct answers.
  4. Advanced Techniques like ASPIRE: Google’s ASPIRE framework is an example of an advanced approach to selective prediction. It enhances the ability of LLMs to make more confident predictions by effectively assessing when to predict and when to withhold a response.
  5. Selective Prediction in Applications: This technique can be particularly useful in applications like conformal prediction, multi-choice question answering, and filtering out low-quality predictions. It ensures that the model provides responses only when it has a high degree of confidence, thereby reducing the risk of disseminating incorrect information.

 

Large language model bootcamp

 

Here’s how it works and improves response quality:

Example:

Imagine using a language model for a task like answering trivia questions. The LLM is prompted with a question: “What is the capital of France?” Normally, the model would generate a response based on its training.

However, with selective prediction, the model first evaluates its confidence in its knowledge about the answer. If it’s highly confident (knowing that Paris is the capital), it proceeds with the response. If not, it may abstain from answering or express uncertainty rather than providing a potentially incorrect answer.

 

 

Improvement in response quality:

  1. Reduces Misinformation: By abstaining from answering when uncertain, selective prediction minimizes the risk of spreading incorrect information.
  2. Enhances Reliability: It improves the overall reliability of the model by ensuring that responses are given only when the model has high confidence in their accuracy.
  3. Better User Trust: Users can trust the model more, knowing that it avoids guessing when unsure, leading to higher quality and more dependable interactions.

Selective prediction, therefore, plays a vital role in enhancing the quality and reliability of responses in real-world applications of LLMs.

 

ASPIRE framework for selective predictions

The ASPIRE framework, particularly in the context of selective prediction for Large Language Models (LLMs), is a sophisticated process designed to enhance the model’s prediction capabilities. It comprises three main stages:

  1. Task-Specific Tuning: In this initial stage, the LLM is fine-tuned for specific tasks. This means adjusting the model’s parameters and training it on data relevant to the tasks it will perform. This step ensures that the model is well-prepared and specialized for the type of predictions it will make.
  2. Answer Sampling: After tuning, the LLM engages in answer sampling. Here, the model generates multiple potential answers or responses to a given input. This process allows the model to explore a range of possible predictions rather than settle on the first plausible option.
  3. Self-Evaluation Learning: The final stage involves self-evaluation learning. The model evaluates the generated answers from the previous stage, assessing their quality and relevance. It learns to identify which answers are most likely to be correct or useful based on its training and the specific context of the question or task.

 

three stages of aspire

 

 

 

Helping businesses with informed decision-making

Businesses and industries can greatly benefit from adopting selective prediction frameworks like ASPIRE in several ways:

  1. Enhanced Decision Making: By using selective prediction, businesses can make more informed decisions. The framework’s focus on task-specific tuning and self-evaluation allows for more accurate predictions, which is crucial in strategic planning and market analysis.
  2. Risk Management: Selective prediction helps in identifying and mitigating risks. By accurately predicting market trends and customer behavior, businesses can proactively address potential challenges.
  3. Efficiency in Operations: In industries such as manufacturing, selective prediction can optimize supply chain management and production processes. This leads to reduced waste and increased efficiency.
  4. Improved Customer Experience: In service-oriented sectors, predictive frameworks can enhance customer experience by personalizing services and anticipating customer needs more accurately.
  5. Innovation and Competitiveness: Selective prediction aids in fostering innovation by identifying new market opportunities and trends. This helps businesses stay competitive in their respective industries.
  6. Cost Reduction: By making more accurate predictions, businesses can reduce costs associated with trial and error and inefficient processes.

 

Learn more about how DALLE, GPT 3, and MuseNet are reshaping industries.

 

Enhance trust with LLMs

Selective prediction frameworks like ASPIRE offer businesses and industries a strategic advantage by enhancing decision-making, improving operational efficiency, managing risks, fostering innovation, and ultimately leading to cost savings.

Overall, the ASPIRE framework is designed to refine the predictive capabilities of LLMs, making them more accurate and reliable by focusing on task-specific tuning, exploratory answer generation, and self-assessment of generated responses

In summary, selective prediction in LLMs is about the model’s ability to judge its own certainty and decide when to provide a response. This enhances the trustworthiness and applicability of LLMs in various domains.

January 24, 2024

Mistral AI, a startup co-founded by individuals with experience at Google’s DeepMind and Meta, made a significant entrance into the world of LLMs with Mistral 7B.

This model can be easily accessed and downloaded from GitHub or via a 13.4-gigabyte torrent, emphasizing accessibility. Mistral 7b, a 7.3 billion parameter model with the sheer size of some of its competitors, Mistral 7b punches well above its weight in terms of capability and efficiency. 

What makes Mistral 7b a great competitor? 

One of the key strengths of Mistral 7b lies in its architecture. Unlike many LLMs relying solely on transformer networks, Mistral 7b incorporates a hybrid approach, leveraging transformers and recurrent neural networks (RNNs). This unique blend allows Mistral 7b to excel at tasks that require both long-term memory and context awareness, such as question answering and code generation. 

Furthermore, Mistral 7b utilizes innovative attention mechanisms like group query attention and sliding window attention. These techniques enable the model to focus on relevant parts of the input data more effectively, improving performance and efficiency. 

 

Learn in detail about llm evaluation method

 

Mistral 7b architecture 

Mistral 7B is an architecture based on transformer architecture and introduces several innovative features and parameters. Here’s a gist of the architectural details: 

 

  1. Sliding window attention: 

Mistral 7B addresses the quadratic complexity of vanilla attention by implementing Sliding Window Attention (SWA). 

SWA allows each token to attend to a maximum of W tokens from the previous layer (here, W = 3). 

Tokens outside the sliding window still influence next-word prediction. 

Information can propagate forward by up to k × W tokens after k attention layers. 

Parameters include dim = 4096, n_layers = 32, head_dim = 128, hidden_dim = 14336, n_heads = 32, n_kv_heads = 8, window_size = 4096, context_len = 8192, and vocab_size = 32000. 

 

 

sliding window attention

Source:E2Enetwork 

 

 

2. Rolling Buffer Cache: 

This fixed-size cache serves as the “memory” for the sliding window attention. It efficiently stores key-value pairs for recent timesteps, eliminating the need for recomputing that information. A set attention span stays constant, managed by a rolling buffer cache limiting its size. 

Within the cache, each time step’s keys and values are stored at a specific location, determined by i mod W, where W is the fixed cache size. When the position i exceeds W, previous values in the cache get replaced. 

This method slashes cache memory usage by 8 times while maintaining the model’s effectiveness. 

 

 

Rolling buffer cache

Source:E2Enetwork 

 

 

3. Pre-fill and chunking: 

During sequence generation, the cache is pre-filled with the provided prompt to enhance context. For long prompts, chunking divides them into smaller segments, each treated with both cache and current chunk attention, further optimizing the process.

When creating a sequence, tokens are guessed step by step, with each token relying on the ones that came before it. The starting information, known as the prompt, lets us fill the (key, value) cache beforehand with this prompt.

The chunk size can determine the window size, and the attention mask is used across both the cache and the chunk. This ensures the model gets the necessary information while staying efficient. 

 

pre fill and chunking

Source:E2Enetwork 

 

 

Comparison of performance: Mistral 7B vs Llama2-13B  

The true test of any LLM lies in its performance on real-world tasks. Mistral 7b has been benchmarked against several established models, including Llama 2 (13B parameters) and Llama 1 (34B parameters).

The results are impressive, with Mistral 7b outperforming both models on all tasks tested. It even approaches the performance of CodeLlama 7B (also 7B parameters) on code-related tasks while maintaining strong performance on general language tasks. Performance comparisons were conducted across a wide range of benchmarks, encompassing various aspects.

 

Large language model bootcamp

 

1. Performance comparison 

Mistral 7B surpasses Llama2-13B across various benchmarks, excelling in commonsense reasoning, world knowledge, reading comprehension, and mathematical tasks. Its dominance isn’t marginal; it’s a robust demonstration of its capabilities. 

 

2. Equivalent Model Capacity 

In reasoning, comprehension, and STEM tasks, Mistral 7B functions akin to a Llama2 model over three times its size. This not only highlights its efficiency in memory usage but also its enhanced processing speed. Essentially, it offers immense power within an elegantly streamlined design. 

 

3. Knowledge-based assessments 

Mistral 7B demonstrates superiority in most assessments and competes equally with Llama2-13B in knowledge-based benchmarks. This parallel performance in knowledge tasks is especially intriguing, given Mistral 7B’s comparatively restrained parameter count. 

 

mistral 7b assessment 

Source:MistralAI 

 

Beyond benchmarks: Practical applications 

The capabilities of Mistral 7b extend far beyond benchmark scores Mistral 7B isn’t limited to a single skill. It performs exceptionally well across various tasks, spanning code-related fields and English language tasks. Remarkably, it matches CodeLlama-7B’s performance in coding tasks, highlighting its adaptability and wide-ranging abilities.  Some of the common works in each field are mentioned below: 

  • Natural Language Processing (NLP): Machine translation, text summarization, question answering, and sentiment analysis. 
  • Code Generation and Analysis: Generate code snippets, translate natural language to code, and analyze existing code for potential issues. 
  • Creative Writing: Compose poems, scripts, musical pieces, and other creative text formats. 
  • Education and Research: Assist with research tasks, generate educational materials, and personalize learning experiences. 

 

 

mistral 7b and llama 

Source:E2Enetwork 

 

llama 2 and mistral

Source:MistralAI 

 

A cost-effective Solution 

One of the most compelling aspects of Mistral 7b is its cost-effectiveness. Compared to models of similar size, Mistral 7b requires significantly less computational resources to run. This makes it a more accessible option for individuals and organizations with limited budgets. Additionally, Mistral AI offers flexible deployment options, allowing users to run the model on their own infrastructure or through the cloud. 

 

Versatile deployment 

Mistral 7B stands out due to its Apache 2.0 license, granting broad accessibility for diverse users, including individuals, major corporations, and governmental bodies.

This open-source license not only ensures inclusivity but also permits customization and adaptation to suit specific needs. It empowers users to modify, share, and utilize Mistral 7B for a wide array of applications, fostering innovation and collaboration in the community. 

 

The decentralization issue vs transparency 

Mistral AI prioritizes transparency and open access, yet safety concerns arise due to the fully decentralized ‘Mistral-7B-v0.1’ model, capable of unmoderated response generation.

Unlike models such as GPT and Llama, it lacks mechanisms to discern appropriate responses, posing potential exploitation risks. However, despite safety concerns, decentralized Language Model Models (LLMs) offer advantages, democratizing AI access and enabling positive applications. 

 

Are large language models the zero shot reasoners? Read more here

 

Conclusion 

Mistral 7b is a testament to the power of innovation in the LLM domain. Despite its relatively small size, it has established itself as a force to be reckoned with, delivering impressive performance across a wide range of tasks. With its focus on efficiency and cost-effectiveness, Mistral 7b is poised to democratize access to cutting-edge language technology and shape the future of how we interact with machines. 

 

January 15, 2024

 Large language models (LLMs), such as OpenAI’s GPT-4, are swiftly metamorphosing from mere text generators into autonomous, goal-oriented entities displaying intricate reasoning abilities. This crucial shift carries the potential to revolutionize the manner in which humans connect with AI, ushering us into a new frontier.

This blog will break down the working of these agents, illustrating the impact they impart on what is known as the ‘Lang Chain’. 

 

Working of the agents 

Our exploration into the realm of LLM agents begins with understanding the key elements of their structure, namely the LLM core, the Prompt Recipe, the Interface and Interaction, and Memory. The LLM core forms the fundamental scaffold of an LLM agent. It is a neural network trained on a large dataset, serving as the primary source of the agent’s abilities in text comprehension and generation. 

The functionality of these agents heavily relies on prompt engineering. Prompt recipes are carefully crafted sets of instructions that shape the agent’s behaviors, knowledge, goals, and persona and embed them in prompts. 

 

langchain agents

 

 

The agent’s interaction with the outer world is dictated by its user interface, which could vary from command-line, graphical, to conversational interfaces. In the case of fully autonomous agents, prompts are programmatically received from other systems or agents.

Another crucial aspect of their structure is the inclusion of memory, which can be categorized into short-term and long-term. While the former helps the agent be aware of recent actions and conversation histories, the latter works in conjunction with an external database to recall information from the past. 

 

Learn in detail about LangChain

 

Ingredients involved in agent creation 

Creating robust and capable LLM agents demands integrating the core LLM with additional components for knowledge, memory, interfaces, and tools.

 

 

The LLM forms the foundation, while three key elements are required to allow these agents to understand instructions, demonstrate essential skills, and collaborate with humans: the underlying LLM architecture itself, effective prompt engineering, and the agent’s interface. 

 

Tools 

Tools are functions that an agent can invoke. There are two important design considerations around tools: 

  • Giving the agent access to the right tools 
  • Describing the tools in a way that is most helpful to the agent 

Without thinking through both, you won’t be able to build a working agent. If you don’t give the agent access to a correct set of tools, it will never be able to accomplish the objectives you give it. If you don’t describe the tools well, the agent won’t know how to use them properly. Some of the vital tools a working agent needs are:

 

  1. SerpAPI : This page covers how to use the SerpAPI search APIs within Lang Chain. It is broken into two parts: installation and setup, and then references to the specific SerpAPI wrapper. Here are the details for its installation and setup:
  • Install requirements with pip install google-search-results 
  • Get a SerpAPI api key and either set it as an environment variable (SERPAPI_API_KEY) 

You can also easily load this wrapper as a tool (to use with an agent). You can do this with:

SERP API

 

2. Math-tool: The llm-math tool wraps an LLM to do math operations. It can be loaded into the agent tools like: 

Python-REPL tool: Allows agents to execute Python code. To load this tool, you can use: 

 

Working of agents in LangChain: Exploring the dynamics | Data Science Dojo

Working of agents in LangChain: Exploring the dynamics | Data Science Dojo

 

 

 

The action of python REPL allows agent to execute the input code and provide the response. 

 

The impact of agents: 

A noteworthy advantage of LLM agents is their potential to exhibit self-initiated behaviors ranging from purely reactive to highly proactive. This can be harnessed to create versatile AI partners capable of comprehending natural language prompts and collaborating with human oversight. 

 

Large language model bootcamp

 

LLM agents leverage LLMs innate linguistic abilities to understand instructions, context, and goals, operate autonomously and semi-autonomously based on human prompts, and harness a suite of tools such as calculators, APIs, and search engines to complete assigned tasks, making logical connections to work towards conclusions and solutions to problems. Here are few of the services that are highly dominated by the use of Lang Chain agents:

 

Working of agents in LangChain: Exploring the dynamics | Data Science Dojo

 

 

Facilitating language services 

Agents play a critical role in delivering language services such as translation, interpretation, and linguistic analysis. Ultimately, this process steers the actions of the agent through the encoding of personas, instructions, and permissions within meticulously constructed prompts.

Users effectively steer the agent by offering interactive cues following the AI’s responses. Thoughtfully designed prompts facilitate a smooth collaboration between humans and AI. Their expertise ensures accurate and efficient communication across diverse languages. 

 

 

Quality assurance and validation 

Ensuring the accuracy and quality of language-related services is a core responsibility. Agents verify translations, validate linguistic data, and maintain high standards to meet user expectations. Agents can manage relatively self-contained workflows with human oversight.

Use internal validation to verify the accuracy and coherence of their generated content. Agents undergo rigorous testing against various datasets and scenarios. These tests validate the agent’s ability to comprehend queries, generate accurate responses, and handle diverse inputs. 

 

Types of agents 

Agents use an LLM to determine which actions to take and in what order. An action can either be using a tool and observing its output, or returning a response to the user. Here are the agents available in Lang Chain.  

Zero-Shot ReAct: This agent uses the ReAct framework to determine which tool to use based solely on the tool’s description. Any number of tools can be provided. This agent requires that a description is provided for each tool. Below is how we can set up this Agent: 

 

Working of agents in LangChain: Exploring the dynamics | Data Science Dojo

 

Let’s invoke this agent and check if it’s working in chain 

Working of agents in LangChain: Exploring the dynamics | Data Science Dojo

 

 

This will invoke the agent. 

Structured-Input ReAct: The structured tool chat agent is capable of using multi-input tools. Older agents are configured to specify an action input as a single string, but this agent can use a tool’s argument schema to create a structured action input. This is useful for more complex tool usage, like precisely navigating around a browser. Here is how one can setup the React agent:

 

Working of agents in LangChain: Exploring the dynamics | Data Science Dojo

 

The further necessary imports required are:

Working of agents in LangChain: Exploring the dynamics | Data Science Dojo

 

 

Setting up parameters:

 

Working of agents in LangChain: Exploring the dynamics | Data Science Dojo

Creating the agent:

Working of agents in LangChain: Exploring the dynamics | Data Science Dojo

 

 

Improving performance of an agent 

Enhancing the capabilities of agents in Large Language Models (LLMs) necessitates a multi-faceted approach. Firstly, it is essential to keep refining the art and science of prompt engineering, which is a key component in directing these systems securely and efficiently. As prompt engineering improves, so does the competencies of LLM agents, allowing them to venture into new spheres of AI assistance.

Secondly, integrating additional components can expand agents’ reasoning and expertise. These components include knowledge banks for updating domain-specific vocabularies, lookup tools for data gathering, and memory enhancement for retaining interactions.

Thus, increasing the autonomous capabilities of agents requires more than just improved prompts; they also need access to knowledge bases, memory, and reasoning tools.

Lastly, it is vital to maintain a clear iterative prompt cycle, which is key to facilitating natural conversations between users and LLM agents. Repeated cycling allows the LLM agent to converge on solutions, reveal deeper insights, and maintain topic focus within an ongoing conversation. 

 

Conclusion 

The advent of large language model agents marks a turning point in the AI domain. With increasing advances in the field, these agents are strengthening their footing as autonomous, proactive entities capable of reasoning and executing tasks effectively.

The application and impact of Large Language Model agents are vast and game-changing, from conversational chatbots to workflow automation. The potential challenges or obstacles include ensuring the consistency and relevance of the information the agent processes, and the caution with which personal or sensitive data should be treated. The promising future outlook of these agents is the potentially increased level of automated and efficient interaction humans can have with AI. 

December 20, 2023

Large language models (LLMs) have revolutionized the field of natural language processing (NLP), enabling machines to generate human-quality text, translate languages, and answer questions in an informative way. These advancements have opened up a world of possibilities for applications in various domains, from customer service to education.  

Want to build a custom llm application? Check out our in-person Large Language Model bootcamp. 

However, mastering LLMs requires a comprehensive understanding of their underlying principles, architectures, and training techniques. 

 

master large language models

 

 

This 7-step guide will provide you with a structured approach to mastering LLMs: 

Step 1: Understand LLM basics 

Before diving into the complexities of LLMs, it’s crucial to establish a solid foundation in the fundamental concepts. This includes understanding the following: 

  • Natural Language Processing (NLP): NLP is the field of computer science that deals with the interaction between computers and human language. It encompasses tasks like machine translation, text summarization, and sentiment analysis. 

 

Read more about attention mechanisms in natural language processing

 

  • Deep Learning: LLMs are powered by deep learning, a subfield of machine learning that utilizes artificial neural networks to learn from data. Familiarize yourself with the concepts of neural networks, such as neurons, layers, and activation functions. 
  • Transformer: The transformer architecture is a cornerstone of modern LLMs. Understand the components of the transformer architecture, including self-attention, encoder-decoder architecture, and positional encoding. 

 

Learn to build custom large language model applications today!                                                

 

Step 2: Explore LLM architectures 

LLMs come in various architectures, each with its strengths and limitations. Explore different LLM architectures, such as: 

  • BERT (Bidirectional Encoder Representations from Transformers): BERT is a widely used LLM that excels in natural language understanding tasks, such as question answering and sentiment analysis. 
  • GPT (Generative Pre-training Transformer): GPT is known for its ability to generate human-quality text, making it suitable for tasks like creative writing and chatbots. 
  • XLNet (Generalized Autoregressive Pre-training for Language Understanding): XLNet is an extension of BERT that addresses some of its limitations, such as its bidirectional nature. 

 

 

Step 3: Pre-training LLMs 

Pre-training is a crucial step in the development of LLMs. It involves training the LLM on a massive dataset of text and code to learn general language patterns and representations. Explore different pre-training techniques, such as: 

  • Masked Language Modeling (MLM): In MLM, random words are masked in the input text, and the LLM is tasked with predicting the missing words. 
  • Next Sentence Prediction (NSP): In NSP, the LLM is given two sentences and asked to determine whether they are consecutive sentences from a text or not. 
  • Contrastive Language-Image Pre-training (CLIP): CLIP involves training the LLM to match text descriptions with their corresponding images. 

 

Step 4: Fine-tuning LLMs 

Fine-tuning involves adapting a pre-trained LLM to a specific task or domain. This is done by training the LLM on a smaller dataset of task-specific data. Explore different fine-tuning techniques, such as:

  • Task-specific loss functions: Define loss functions that align with the specific task, such as accuracy for classification tasks or BLEU score for translation tasks. 
  • Data augmentation: Augment the task-specific dataset to improve the LLM’s generalization ability. 
  • Early stopping: Implement early stopping to prevent overfitting and optimize the LLM’s performance. 

 

This talk below can help you get started with fine-tuning GPT 3.5 Turbo. 

 

 

 

Step 5: Alignment and post-training 

Alignment and post-training are essential steps to ensure that LLMs are aligned with human values and ethical considerations. This includes: 

  • Bias mitigation: Identify and mitigate biases in the LLM’s training data and outputs. 
  • Fairness evaluation: Evaluate the fairness of the LLM’s decisions and identify potential discriminatory patterns. 
  • Explainability: Develop methods to explain the LLM’s reasoning and decision-making processes. 

 

Step 6: Evaluating LLMs 

Evaluating LLMs is crucial to assess their performance and identify areas for improvement. Explore different evaluation metrics, such as: 

  • Accuracy: Measure the proportion of correct predictions for classification tasks. 
  • Fluency: Assess the naturalness and coherence of the LLM’s generated text. 
  • Relevance: Evaluate the relevance of the LLM’s outputs to the given prompts or questions. 

 

Read more about: Evaluating large language models

 

Step 7: Build LLM apps 

With a strong understanding of LLMs, you can start building applications that leverage their capabilities. Explore different application scenarios, such as:

  • Chatbots: Develop chatbots that can engage in natural conversations with users. 
  • Content creation: Utilize LLMs to generate creative content, such as poems, scripts, or musical pieces. 
  • Machine translation: Build machine translation systems that can accurately translate languages. 

 

 

Start learning large language models

Mastering large language models (LLMs) is an ongoing journey that requires continuous learning and exploration. By following these seven steps, you can gain a comprehensive understanding of LLMs, their underlying principles, and the techniques involved in their development and application.  

As LLMs continue to evolve, stay informed about the latest advancements and contribute to the responsible and ethical development of these powerful tools. Here’s a list of YouTube channels that can help you stay updated in the world of large language models.

December 8, 2023

Multimodality refers to an AI model’s ability to understand, process, and generate multiple types of information, such as text, images, and potentially even sounds. It’s the capacity to interpret and interact with various data forms, where the model not only reads textual information but also comprehends visual or other types of data.  

 

How does multimodality increase the power of LLMs?

The significance of multimodality lies in its potential to greatly enhance the effectiveness and applications of AI models.  

Consider the human intellect and its capacity to comprehend the world and tackle unique challenges. This ability stems from processing diverse forms of information, including language, sight, and taste, among others.

If an individual lacks access to one of these sensory inputs from the outset, such as vision, their understanding of the real world is likely to be significantly impaired. 

 

 

multimodality use cases

 

Hence, multimodality in models, like GPT-4, allows them to develop intuition and understand complex relationships not just inside single modalities but across them, mimicking human-level cognizance to a higher degree.  

 

Read about: GPT 3.5 VS GPT 4

 

Here are a few examples where we see that GPT-4 Vision is capable of performing human-like tasks:

 

Example 1: GPT-4 Vision and understanding humor

 

GPT 4- humor

  Source: OpenAI 

 

 

Example 2: GPT-4 Vision acing complex exams  

 

 

GPT 4 vision - complex exams
Source: OpenAI

 

 

Why does vision help GPT-4 do better on tests? Well, think about it like this: you’d probably get more out of an exam if it’s written down for you to see, rather than just hearing it from someone, right?

It’s the same deal with a model like the GPT-4. Having that visual element just makes things a bit clearer and easier to work with. 

Hence, multimodal learning opens up newer opportunities, helps AI handle real-world data more efficiently, and brings us closer to developing AI models that act and think more like humans. 

 

Large language model bootcamp

 

How does the GPT-4 with Vision model combine text and image inputs to provide responses? 

 

GPT-4 with Vision combines natural language processing capabilities with computer vision. This means it can accept different forms of input, like text and images, and deliver outputs based on that mixture of information.

This model represents a significant advance in machine learning and natural language processing, as it bridges two traditionally separate fields: computer vision and natural language processing. 

Enabling models to understand different types of data enhances their performance and expands their application scope. For instance, in the real-world, they may be used for Visual Question Answering (VQA), wherein the model is given an image and a text query about the image, and it needs to provide a suitable answer. 

 

Use-cases of GPT-4 Vision 

 

GPT-4V can perform a variety of tasks, including data deciphering, multi-condition processing, text transcription from images, object detection, coding enhancement, design understanding, and more. Here are some mind-boggling use cases of GPT-4 Vision. Of course, as time progresses, its usability will keep increasing.

  1. Data Deciphering and Visualization: GPT-4V is capable of processing infographics or charts and providing detailed breakdowns of the data presented. This means that complex visual data can be transformed into understandable insights, making it easier for users to comprehend complex information. Here’s an example:

 

data visualization GPT4

Source: Datacamp 

 

Conversely, the technology demonstrates proficiency in interpreting the provided data and generating impactful visual representations. Here’s an example where GPT-4 successfully processed LATEX code to produce a Python plot.

This was achieved through interactive dialogue with the user. In this scenario, the model accurately extracted the necessary data and efficiently addressed all user queries. It adeptly reformatted the data and tailored the visualization to meet the specified requirements. 

 

GPT 4 experiments

Source: Sparks of Artificial General Intelligence: Early experiments with GPT-4 | Microsoft 

 

 

1. Multi-condition processing:

GPT-4V is excellent at analyzing images under varying conditions, such as different lighting or complex scenes, and can provide insightful details drawn from these varying contexts.  

 

GPT 4 multi condition

Source: roboflow 

 

Text Transcription

The model is geared to transcribe text from images. It could be a game-changer in digitizing written or printed documents by converting images of text into a digital format. 

text transcription gpt 4

 

Object Detection

GPT-4V has superior object detection capabilities. It can accurately identify different objects within an image, even abstract ones, providing a comprehensive analysis and comprehension of images. 

 

  object detection

Source: roboflow 

 

 

Game Development:

GPT-4V can significantly impact the gaming industry as well. Here an example where it was provided with a comprehensive overview of a 3D game. GPT-4 demonstrated its capability to develop a functional game using HTML and JavaScript. This is accomplished without prior training or experience in related projects. 

game development gpt 4

Source: Sparks of Artificial General Intelligence: Early experiments with GPT-4 | Microsoft 

 

 

Web Development:

GPT-4 Vision significantly enhances web development by enabling the creation of websites from visual inputs like sketches. It interprets design elements and transforms them into functional HTML, CSS, and JavaScript code, including interactive features and specific themes, such as a ’90s hacker style with dynamic effects. Here’s an example where GPT-4 was prompted to write code for a website by only providing it a hand drawn sketch:  

 

web development gpt 4

Source: Datacamp 

 

 

Once the HTML and CSS files were created as instructed, this was the result: 

 

web development gpt 4 output

Source: Datacamp 

 

This advancement streamlines the web development process, making it more accessible and efficient, particularly for those with limited coding knowledge. It opens up new possibilities for creative design and can be applied across various domains, potentially evolving with continuous learning and improvement. 

 

Learn to build custom large language model applications today!                                                

 

Complex Mathematical Analysis: GPT-4V can process and analyze intricate mathematical expressions, especially when they are represented graphically or in handwritten forms. 

 

 

mathematical expression

Source: roboflow 

 

 

Integrations with Other Systems: GPT-4 can be integrated with other systems through its API, expanding its application sphere to diverse domains like security, healthcare diagnostics, and entertainment. 

Educational Assistance: GPT-4V can help in the educational sector by analysing diagrams, illustrations, and visual aids, and transforming them into detailed textual explanations, making concepts easier to comprehend for students and educators alike. 

The innovation of incorporating visual capabilities, therefore, offers a dynamic and engaging method for users to interact with AI systems. 

 

 

Where does GPT 4 Vision perform less effectively? 

While the GPT-4 Vision is groundbreaking, it is important to recognize its limitations and risks. 

  • Privacy Concerns: GPT-4 Vision’s ability to identify individuals and locations in images raises serious privacy issues. This poses a challenge for companies to balance innovation with adherence to privacy laws and ethical practices. 
  • Bias in Image Analysis: The risk of biases in image interpretation could lead to unfair or discriminatory outcomes, particularly affecting diverse demographic groups. This necessitates careful oversight and continuous improvement of the AI’s algorithms to minimize biases. 
  • Unreliable Medical Advice or Dangerous Instructions: The model might inadvertently provide inaccurate medical advice or instructions for potentially hazardous tasks. This limitation is significant, especially in contexts where precise and reliable information is critical for safety and health. 
  • Cybersecurity Vulnerabilities: GPT-4 Vision could be exploited for tasks like solving CAPTCHAs, posing cybersecurity risks. This highlights the need for robust security measures to prevent malicious use. 
  • Content Accuracy and Hallucination: The model, like other AI systems, can sometimes generate content that is not factually correct or based in reality, known as ‘hallucinations’. Users must be vigilant and verify the information provided by the AI. 
  • Refusal to Analyze Certain Images: In some cases, GPT-4 Vision might refuse to analyze images, particularly those involving people, due to the sensitive nature of such data. This limitation can be viewed as a measure to prevent misuse or ethical breaches, but it also restricts the model’s functionality in certain scenarios. 
  • Overall, these risks and limitations highlight the importance of cautious and responsible deployment of GPT-4 Vision, ensuring that its use aligns with ethical standards and societal norms. 

 

Conclusion 

GPT-4 Vision represents a monumental leap in AI technology, merging text and image processing to offer unprecedented capabilities. Its potential in fields like web development, content creation, and data analysis is immense.

However, this technology comes with responsibilities. The potential risks, including privacy concerns, biases, and safety issues, underscore the importance of using GPT-4 Vision with a mindful approach.

As we harness this powerful tool, it’s crucial to continuously evaluate and address these challenges to ensure ethical and responsible usage of AI. 

December 6, 2023

In this blog, we are enhancing our Language Model (LLM) experience by adopting the Retrieval-Augmented Generation (RAG) approach!

We’ll explore the fundamental architecture of RAG conceptually and delve deeper by implementing it through the Lang Chain orchestration framework and leveraging an open-source model from Hugging Face for both question answering and text embedding. 

So, let’s get started! 

Common hallucinations in large language models  

The most common problem faced by state-of-the-art LLMs is that they produce inaccurate or hallucinated responses. This mostly occurs when prompted with information not present in their training set, despite being trained on extensive data.

 

Large language model bootcamp

 

This discrepancy between the general knowledge embedded in the LLM’s weights and newer information can be bridged using RAG. The solution provided by RAG eliminates the need for computationally intensive and expertise-dependent fine-tuning, offering a more flexible approach to adapting to evolving information.

 

Read more about: AI hallucinations and risks associated with large language models

 

 

 

AI hallucinations
AI hallucinations

What is RAG? 

Retrieval-Augmented Generation involves enhancing the output of Large Language Models (LLMs) by providing them with additional information from an external knowledge source.

 

Explore LLM context augmentation techniques like RAG and fine-tuning in detail with out podcast now!

 

This method aims to improve the accuracy and contextuality of LLM-generated responses while minimizing factual inaccuracies. RAG empowers language models to sidestep the need for retraining, facilitating access to the most up-to-date information to produce trustworthy outputs through retrieval-based generation. 

Architecture of RAG approach

Retrieval augmented generation (RAG) - Elevate your large language models experience | Data Science Dojo

Figure from Lang chain documentation

Prerequisites for code implementation 

  1. HuggingFace account and LLAMA2 model access:
  • Create a Hugging Face account (free sign-up available) to access open-source Llama 2 and embedding models. 
  • Request access to LLAMA2 models using this form (access is typically granted within a few hours). 
  • After gaining access to Llama 2 models, please proceed to the provided link, select the checkbox to indicate your agreement to the information, and then click ‘Submit’. 

2. Google Colab account:

  • Create a Google account if you don’t already have one. 
  • Use Google Colab for code execution. 

3. Google Colab environment setup: 

  • In Google Colab, go to Runtime > Change runtime type > Hardware accelerator > GPU > GPU type > T4 for faster execution of code. 

4. Library and dependency installation: 

  • Install necessary libraries and dependencies using the following command: 

 

5. Authentication with HuggingFace: 

  • Integrate your Hugging Face token into Colab’s environment:

 

 

  • When prompted, enter your Hugging Face token obtained from the “Access Token” tab in your Hugging Face settings. 

 

Step 1: Document Loading 

Loading a document refers to the process of retrieving and storing data as documents in memory from a specified source. This process is typically facilitated by document loaders, which provide a “load” method for accessing and loading documents into the memory. 

Lang chain has number of document loaders in this example we will be using “WebBaseLoader” class from the “langchain.document_loaders” module to load content from a specific web page.

 

 

 
The code extracts content from the web page “https://lilianweng.github.io/posts/2023-06-23-agent/“. BeautifulSoup (`bs4`) is employed for HTML parsing, focusing on elements with the classes “post-content”, “post-title”, and “post-header.” The loaded content is stored in the variable `docs`. 

 

 

Step 2: Document transformation – Splitting/chunking document 

After loading the data, it can be transformed to fit the application’s requirements or to extract relevant portions. This involves splitting lengthy documents into smaller chunks that are compatible with the model and produce accurate and clear results. Lang Chain offers various text splitters, in this implementation we chose the “RecursiveCharacterTextSplitter” for generic text processing.

 

 

The code breaks documents into chunks of 1000 characters with a 200-character overlap. This chunking is employed for embedding and vector storage, enabling more focused retrieval of relevant content during runtime. The recursive splitter ensures chunks maintain contextual integrity by using common separators, like new lines, until the desired chunk size is achieved. 

Step 3: Storage in vector database 

After extracting text chunks, we store and index them for future searches using the RAG application. A common approach involves embedding the content of each split and storing these embeddings in a vector store. 

When searching, we embed the search query and perform a similarity search to identify stored splits with embeddings most similar to the query embedding. Cosine similarity, which measures the angle between embeddings, is a simple similarity measure. 

Using the Chroma vector store and open source “HuggingFaceEmbeddings” in Lang chain, we can embed and store all document splits in a single command. 

Text embedding: 

Text embedding converts textual data into numerical vectors that capture the semantic meaning of the text. This enables efficient identification of similar text pieces. An embedding model, which is a variant of Language Models (LLMs) specifically designed for this purpose. 

 Lang Chain’s Embeddings class facilitates interaction with various text embedding models. While any model can be used, we opted for “HuggingFaceEmbeddings”. 

 

 

 

This code initializes an instance of the HuggingFaceEmbeddings class, configuring it with an open-source pre-trained model located at “sentence-transformers/all-MiniLM-l6-v2“. By doing this text embedding is created for converting textual data into numerical vectors. 

 

Learn to build custom large language model applications today!                                                

 

Vector Stores: 

Vector stores are specialized databases designed to efficiently store and search for high-dimensional vectors, such as text embeddings. They enable the retrieval of the most similar embedding vectors based on a given query vector. Lang Chain integrates with various vector stores, and we are using “Chroma” vector store for this task.

 

 

This code utilizes the Chroma class to create a vector store (vectorstore) from the previously split documents (splits) using the specified embeddings (embeddings). The Chroma vector store facilitates efficient storage and retrieval of document vectors for further processing. 

Step 4: Retrieval of text chunks 

After storing the data, preparing the LLM model, and constructing the pipeline, we need to retrieve the data. Retrievers serve as interfaces that return documents based on a query. 

Retrievers cannot store documents; they can only retrieve them. Vector stores form the foundation of retrievers. Lang Chain offers a variety of retriever algorithms, here is the one we implement. 

 

 

Step 5: Generation of answer with RAG approach 

Preparing the LLM Model: 

In the context of Retrieval Augmented Generation (RAG), an LLM model plays a crucial role in generating comprehensive and informative responses to user queries. By leveraging its ability to process and understand natural language, the LLM model can effectively combine retrieved documents with the given query to produce insightful and relevant outputs.

 

These lines import the necessary libraries for handling pre-trained models and tokenization. The specific model “meta-llama/Llama-2-7b-chat-hfis chosen for its question-answering capabilities.

 

 

 

This code defines a transformer pipeline, which encapsulates the pre-trained HuggingFace model and its associated configuration. It specifies the task as “text-generation” and sets various parameters to optimize the pipeline’s performance. 

 

 

This line creates a Lang Chain pipeline (HuggingFace Pipeline) that wraps the transformer pipeline. The model_kwargs parameter adjusts the model’s “temperature” to control its creativity and randomness. 

Retrieval QA Chain: 

To combine question-answering with a retrieval step, we employ the RetrievalQA chain, which utilizes a language model and a vector database as a retriever. By default, we process all data in a single batch and set the chain type to “stuff” when interacting with the language model. 

 

 

 

 

 

This code initializes a RetrievalQA instance by specifying a chain type (“stuff”), a HuggingFacePipeline (llm), and a retriever (retriever-initialize previously in the code from vectorstore). The return_source_documents parameter is set to True to include source documents in the output, enhancing contextual information retrieval.
 

Finally, we call this QA chain with the specific question we want to ask.

 

 

The result will be: 

 

 

We can print source documents to see which document chunks the model used to generate the answer to this specific query.

 

 

 

 

In this output, only 2 out of 4 document contents are shown as an example, that were retrieved to answer the specific question. 

Conclusion 

In conclusion, by embracing the Retrieval-Augmented Generation (RAG) approach, we have elevated our Language Model (LLM) experience to new heights.

Through a deep dive into the conceptual foundations of RAG and practical implementation using the Lang Chain orchestration framework, coupled with the power of an open-source model from Hugging Face, we have enhanced question answering capabilities of LLMs.

This journey exemplifies the seamless integration of innovative technologies to optimize LLM capabilities, paving the way for a more efficient and powerful language processing experience. Cheers to the exciting possibilities that arise from combining innovative approaches with open-source resources! 

December 6, 2023

GPT-3.5 and other large language models (LLMs) have transformed natural language processing (NLP). Trained on massive datasets, LLMs can generate text that is both coherent and relevant to the context, making them invaluable for a wide range of applications. 

Learning about LLMs is essential in today’s fast-changing technological landscape. These models are at the forefront of AI and NLP research, and understanding their capabilities and limitations can empower people in diverse fields. 

This blog lists steps and several tutorials that can help you get started with large language models. From understanding large language models to building your own ChatGPT, this roadmap covers it all. 

large language models pathway

Want to build your own ChatGPT? Checkout our in-person Large Language Model Bootcamp. 

 

Step 1: Understand the real-world applications 

Building a large language model application on custom data can help improve your business in a number of ways. This means that LLMs can be tailored to your specific needs. For example, you could train a custom LLM on your customer data to improve your customer service experience.  

The talk below will give an overview of different real-world applications of large language models and how these models can assist with different routine or business activities. 

 

 

 

Step 2: Introduction to fundamentals and architectures of LLM applications 

Applications like Bard, ChatGPT, Midjourney, and DallE have entered some applications like content generation and summarization. However, there are inherent challenges for a lot of tasks that require a deeper understanding of trade-offs like latency, accuracy, and consistency of responses.

Any serious applications of LLMs require an understanding of nuances in how LLMs work, including embeddings, vector databases, retrieval augmented generation (RAG), orchestration frameworks, and more. 

This talk will introduce you to the fundamentals of large language models and their emerging architectures. This video is perfect for anyone who wants to learn more about Large Language Models and how to use LLMs to build real-world applications. 

 

 

 

Step 3: Understanding vector similarity search 

Traditional keyword-based methods have limitations, leaving us searching for a better way to improve search. But what if we could use deep learning to revolutionize search?

 

Large language model bootcamp

 

Imagine representing data as vectors, where the distance between vectors reflects similarity, and using Vector Similarity Search algorithms to search billions of vectors in milliseconds. It’s the future of search, and it can transform text, multimedia, images, recommendations, and more.  

The challenge of searching today is indexing billions of entries, which makes it vital to learn about vector similarity search. This talk below will help you learn how to incorporate vector search and vector databases into your own applications to harness deep learning insights at scale.  

 

 

Step 4: Explore the power of embedding with vector search 

 The total amount of digital data generated worldwide is increasing at a rapid rate. Simultaneously, approximately 80% (and growing) of this newly generated data is unstructured data—data that does not conform to a table- or object-based model.

Examples of unstructured data include text, images, protein structures, geospatial information, and IoT data streams. Despite this, the vast majority of companies and organizations do not have a way of storing and analyzing these increasingly large quantities of unstructured data.  

 

Learn to build LLM applications

 

Embeddings—high-dimensional, dense vectors that represent the semantic content of unstructured data can remedy this issue. This makes it significant to learn about embeddings.  

 

The talk below will provide a high-level overview of embeddings, discuss best practices around embedding generation and usage, build two systems (semantic text search and reverse image search), and see how we can put our application into production using Milvus.  

 

 

Step 5: Discover the key challenges in building LLM applications 

As enterprises move beyond ChatGPT, Bard, and ‘demo applications’ of large language models, product leaders and engineers are running into challenges. The magical experience we observe on content generation and summarization tasks using ChatGPT is not replicated on custom LLM applications built on enterprise data. 

Enterprise LLM applications are easy to imagine and build a demo out of, but somewhat challenging to turn into a business application. The complexity of datasets, training costs, cost of token usage, response latency, context limit, fragility of prompts, and repeatability are some of the problems faced during product development. 

Delve deeper into these challenges with the below talk: 

 

Step 6: Building Your Own ChatGPT 

 

Learn how to build your own ChatGPT or a custom large language model using different AI platforms like Llama Index, LangChain, and more. Here are a few talks that can help you to get started:  

Build Agents Simply with OpenAI and LangChain 

Build Your Own ChatGPT with Redis and Langchain 

Build a Custom ChatGPT with Llama Index 

 

Step 7: Learn about Retrieval Augmented Generation (RAG)  

Learn the common design patterns for LLM applications, especially the Retrieval Augmented Generation (RAG) framework; What is RAG and how it works, how to use vector databases and knowledge graphs to enhance LLM performance, and how to prioritize and implement LLM applications in your business.  

The discussion below will not only inspire organizational leaders to reimagine their data strategies in the face of LLMs and generative AI but also empower technical architects and engineers with practical insights and methodologies. 

 

 

Step 8: Understanding AI observability  

AI observability is the ability to monitor and understand the behavior of AI systems. It is essential for responsible AI, as it helps to ensure that AI systems are safe, reliable, and aligned with human values.  

The talk below will discuss the importance of AI observability for responsible AI and offer fresh insights for technical architects, engineers, and organizational leaders seeking to leverage Large Language Model applications and generative AI through AI observability.  

 

Step 9: Prevent large language models hallucination  

It important to evaluate user interactions to monitor prompts and responses, configure acceptable limits to indicate things like malicious prompts, toxic responses, llm hallucinations, and jailbreak attempts, and set up monitors and alerts to help prevent undesirable behaviour. Tools like WhyLabs and Hugging Face play a vital role here.  

The talk below will use Hugging Face + LangKit to effectively monitor Machine Learning and LLMs like GPT from OpenAI. This session will equip you with the knowledge and skills to use LangKit with Hugging Face models. 

 

 

 

Step 10: Learn to fine-tune LLMs 

Fine-tuning GPT-3.5 Turbo allows you to customize the model to your specific use case, improving performance on specialized tasks, achieving top-tier performance, enhancing steerability, and ensuring consistent output formatting. It important to understand what fine-tuning is, why it’s important for GPT-3.5 Turbo, how to fine-tune GPT-3.5 Turbo for specific use cases, and some of the best practices for fine-tuning GPT-3.5 Turbo.  

Whether you’re a data scientist, machine learning engineer, or business user, this talk below will teach you everything you need to know about fine-tuning GPT-3.5 Turbo to achieve your goals and using a fine tuned GPT3.5 Turbo model to solve a real-world problem. 

 

 

 

 

Step 11: Become ChatGPT prompting expert 

Learn advanced ChatGPT prompting techniques essential to upgrading your prompt engineering experience. Use ChatGPT prompts in all formats, from freeform to structured, to get the most out of large language models. Explore the latest research on prompting and discover advanced techniques like chain-of-thought, tree-of-thought, and skeleton prompts. 

Explore scientific principles of research for data-driven prompt design and master prompt engineering to create effective prompts in all formats.

 

 

 

Step 12: Master LLMs for more 

Large Language Models assist with a number of tasks like analysing the data while creating engaging and informative data visualizations and narratives or to easily create and customize AI-powered PowerPoint presentations 

Start mastering LLMs for tasks that can ease up your business activities.  

To learn more about large language models, checkout this playlist; from tutorials to crash courses, it is your one-stop learning spot for LLMs and Generative AI.  

November 18, 2023

RAG integration revolutionized search with LLM, boosting dynamic retrieval.

Within the implementation of a RAG system, a pivotal factor governing its efficiency and performance lies in the determination of the optimal chunk size. How does one identify the most effective chunk size for seamless and efficient retrieval? This is precisely where the comprehensive assessment provided by the LlamaIndex Response Evaluation tool becomes invaluable.

In this article, we will provide a comprehensive walkthrough, enabling you to discern the ideal chunk size through the powerful features of LlamaIndex’s Response Evaluation module. 

Tune in to Co-founder and CEO of LlamaIndex, Jerry Liu, and learn all about LLMs, RAG, fine-tuning and more!

Why chunk size matters in RAG system

Selecting the appropriate chunk size is a crucial determination that holds sway over the effectiveness and precision of a RAG system in various ways: 

 

Pertinence and detail:

Opting for a smaller chunk size, such as 256, results in more detailed segments. However, this heightened detail brings the potential risk that pivotal information might not be included in the most retrieved segments.

On the contrary, a chunk size of 512 is likely to encompass all vital information within the leading chunks, ensuring that responses to inquiries are readily accessible. To navigate this challenge, we will employ the faithfulness and relevance metrics.

These metrics gauge the absence of ‘hallucinations’ and the ‘relevancy’ of responses concerning the query and the contexts retrieved, respectively. 

 

Large language model bootcamp

Generation time for responses:

With an increase in the chunk size, the volume of information directed into the LLM for generating a response also increases. While this can guarantee a more comprehensive context, it might potentially decelerate the system. Ensuring that the added depth doesn’t compromise the system’s responsiveness is pivotal.

Ultimately, finding the ideal chunk size boils down to achieving a delicate equilibrium. Capturing all crucial information while maintaining operational speed It’s essential to conduct comprehensive testing with different sizes to discover a setup that aligns with the unique use case and dataset requirements. 

Why evaluation? 

The discussion surrounding evaluation in the field of NLP has been contentious, particularly with the advancements in NLP methodologies.

Traditional evaluation techniques like BLEU or F1 are now unreliable for assessing models because they have limited correspondence with human evaluations.

As a result, the landscape of evaluation practices continues to shift, emphasizing the need for cautious application. 

In this blog, our focus will be on configuring the gpt-3.5-turbo model to serve as the central tool for evaluating the responses in our experiment.

To facilitate this, we establish two key evaluators, the faithfulness evaluator and the relevance evaluator, utilizing the service context. This approach aligns with the evolving standards of LLM evaluation, reflecting the need for more sophisticated and reliable evaluation mechanisms. 

 

 Faithfulness evaluator: This evaluator is instrumental in determining whether the response was artificially generated and checks if the response from a query engine corresponds with any source nodes. 

Relevancy evaluator: This evaluator is crucial for gauging whether the query was effectively addressed by the response and examines whether the response, combined with source nodes, matches the query. 

In order to determine the appropriate chunk size, we will calculate metrics such as average response time, average faithfulness, and average relevancy across different chunk sizes.  

 

 

Downloading dataset 

We will be using the IRS armed forces tax guide for this experiment. 

  • mkdir is used to make a folder. Here we are making a folder named dataset in the root directory. 
  • wget command is used for non-interactive downloading of files from the web. It allows users to retrieve content from web servers, supporting various protocols like HTTP, HTTPS, and FTP. 

 

 

Load dataset 

  • SimpleDirectoryReader class will help us to load all the files in the dataset directory. 
  • document[0:10] represents that we will only be loading the first 10 pages of the file for the sake of simplicity. 

 

 

Defining question bank 

These questions will help us to evaluate metrics for different chunk sizes. 

 

 

 

Establishing evaluators  

This code initializes an OpenAI language model (gpt-3.5-turbo) with temperature=0 settings and instantiate evaluators for measuring faithfulness and relevancy, utilizing the ServiceContext module with default configurations. 

 

 

Main evaluator method 

We will be evaluating each chunk size based on 3 metrics. 

  1. Average Response Time 
  2. Average Faithfulness 
  3. Average Relevancy 

 

Read this blog about Orchestation Framework

 

  • The function evaluator takes two parameters, chunkSize and questionBank. 
  • It first initializes an OpenAI language model (llm) with the model set to gpt-3.5-turbo. 
  • Then, it creates a serviceContext using the ServiceContext.from_defaults method, specifying the language model (llm) and the chunk size (chunkSize). 
  • The function uses the VectorStoreIndex.from_documents method to create a vector index from a set of documents, with the service context specified. 
  • It builds a query engine (queryEngine) from the vector index. 
  • The total number of questions in the question bank is determined and stored in the variable totalQuestions. 

Next, the function initializes variables for tracking various metrics: 

  • totalResponseTime: Tracks the cumulative response time for all questions. 
  • totalFaithfulness: Tracks the cumulative faithfulness score for all questions. 
  • totalRelevancy: Tracks the cumulative relevancy score for all questions. 
  • It records the start time before querying the queryEngine for a response to the current question. 
  • It calculates the elapsed time for the query by subtracting the start time from the current time. 
  • The function evaluates the faithfulness of the response using faithfulnessLLM.evaluate_response and stores the result in the faithfulnessResult variable. 
  • Similarly, it evaluates the relevancy of the response using relevancyLLM.evaluate_response and stores the result in the relevancyResult variable. 
  • The function accumulates the elapsed time, faithfulness result, and relevancy result in their respective total variables. 
  • After evaluating all the questions, the function computes the averages 

 

 

 

Testing different chunk sizes 

To find out the best chunk size for our data, we have defined a list of chunk sizes then we will traverse through the list of chunk sizes and find out the average response time, average faithfulness, and average relevance with the help of evaluator method. After this, we will convert our data list into a data frame with the help of Pandas DataFrame class to view it in a fine manner. 

 

 

From the illustration, it is evident that the chunk size of 128 exhibits the highest average faithfulness and relevancy while maintaining the second-lowest average response time. 

Use LlamaIndex to construct a RAG system 

Identifying the best chunk size for a RAG system depends on a combination of intuition and empirical data. By utilizing LlamaIndex’s Response Evaluation module, we can experiment with different sizes and make well-informed decisions.

When constructing a RAG system, it is crucial to remember that the chunk size plays a pivotal role. Therefore, it is essential to invest the necessary time to thoroughly evaluate and fine-tune the chunk size for optimal outcomes. 

 

You can find the complete code here 

October 31, 2023

Generative AI and LLMs are two modern technologies that can revolutionize the way we work, live, and play. They can help us create new things, solve problems, and understand the world better. We should all learn about these technologies so we can take advantage of the many opportunities they will create in the years to come.

Data Science Dojo Large Language Models Bootcamp

The Data Science Dojo Large Language Models Bootcamp is a 5-day in-person bootcamp that teaches you everything you need to know about large language models (LLMs) and their real-world applications.

Link to Bootcamp -> Large Language Models Bootcamp 

Test your large language models and generative AI knowledge

Key topics covered:

  • Generative AI and LLM Fundamentals
  • A comprehensive introduction to the fundamentals of generative AI, foundation models and Large language models
  • Canonical Architectures of LLM Applications
  • An in-depth understanding of various LLM-powered application architectures and their relative tradeoffs
  • Embeddings and Vector Databases with practical experience
  • Prompt Engineering with practical experience
  • Orchestration Frameworks: LangChain and Llama Index with practical experience
  • Deployment of LLM Applications
  • Learn how to deploy your LLM applications using Azure and Hugging Face cloud
  • Customizing Large Language Models
  • Practical experience with fine-tuning, parameter efficient tuning and retrieval parameter-efficient + retrieval-augmented approaches
  • Building An End-to-End Custom LLM Application
  • A custom LLM application created on selected datasets

 

Instructor details:

The instructors at Data Science Dojo are experienced experts in the fields of LLMs and generative AI. They have a deep understanding of the theory and practice of LLMs, and they are passionate about teaching others about this exciting new field.

This bootcamp offers a comprehensive introduction to getting started with building a ChatGPT on your own data. By the end of the bootcamp, you will be capable of building LLM-powered applications on any dataset of your choice.

 

Location and duration:

The Data Science Dojo LLM Bootcamp has been held in Seattle, Washington D.C and Austin. The upcoming Bootcamp is scheduled in Seattle for Jan 29th – Feb 2nd, 2024. The large language model bootcamp lasts for 5 days. It is a full-time bootcamp, so you can expect to spend 8-10 hours per day learning and working on projects.

Cost:

The Data Science Dojo LLM Bootcamp costs $3,499. There are a number of scholarships and payment plans available.

Prerequisites:

There are no formal prerequisites for the Data Science Dojo LLM Bootcamp. However, it is recommended that you have some basic knowledge of programming and machine learning.

Who should attend?

The Data Science Dojo LLM Bootcamp is ideal for anyone who is interested in learning about LLMs and building LLM-powered applications. This includes software engineers, data scientists, researchers, and anyone else who wants to be at the forefront of this rapidly growing field.

Application process:

To apply for the Data Science Dojo LLM Bootcamp, you will need to complete an online application form here.

Large language model bootcamp

AI Planet’s LLM Bootcamp

  • Key topics covered: This bootcamp is structured to provide an in-depth understanding of large language models (LLMs) and generative AI. Students will start with the basics and gradually delve into advanced topics. The curriculum encompasses:
    1. Building your own LLMs
    2. Fine-tuning existing models
    3. Using LLMs to create innovative applications
  • Duration: 7 weeks, August 12–September 24, 2023.
  • Location: Online—Learn from anywhere!
  • Instructors: The bootcamp boasts experienced experts in the field of LLMs and generative AI. These experts bring a wealth of knowledge and real-world experience to the classroom, ensuring that students receive a hands-on and practical education. Additionally, the bootcamp emphasizes hands-on projects where students can apply what they’ve learned to real-world scenarios.
  • Who should attend: The AI Planet LLM Bootcamp is ideal for anyone who is interested in learning about LLMs AI. This includes software engineers, data scientists, researchers, and anyone else who wants to be at the forefront of this rapidly growing field.

For a prospective student, AI Planet’s LLM Bootcamp offers a comprehensive education in the domain of large language models. The combination of experienced instructors, a hands-on approach, and a curriculum that covers both basics and advanced topics makes it a compelling option for anyone looking to delve into the world of LLMs and AI.

Learn to build LLM applications

Xavor Generative AI Bootcamp

The Xavor Generative AI Bootcamp is a 3-month online bootcamp that teaches you the skills you need to build and deploy generative AI applications. You’ll learn about the different types of generative AI models, how to train them, and how to use them to create innovative applications.

Link to Bootcamp -> Xavor Generative AI Bootcamp

Key topics covered:

  • Introduction to generative AI
  • Different types of AI models
  • Training and deploying AI models
  • Building AI applications
  • Case studies of generative AI applications in the real world

Instructor details:

The instructors at Xavor are experienced practitioners in the field of generative AI. They have a deep understanding of the theory and practice, and they are passionate about teaching others about this exciting new field.

Location and duration:

The Xavor Generative AI Bootcamp is held online and lasts for 3 months. It is a part-time bootcamp, so you can expect to spend 4-6 hours per week learning and working on projects.

Cost:

The Xavor Bootcamp is free.

Prerequisites:

There are no formal prerequisites for the Xavor Bootcamp. However, it is recommended that you have some basic knowledge of programming and machine learning.

Who should attend:

The Xavor Bootcamp is ideal for anyone who is interested in learning about generative AI and building its applications. This includes software engineers, data scientists, researchers, and anyone else who wants to be at the forefront of this rapidly growing field.

Application process:

To apply for the Xavor Generative AI Bootcamp, you will need to complete an online application form. The application process includes a coding challenge and a video interview.

 

Full Stack LLM Bootcamp

The Full Stack Deep Learning (FSDL) LLM Bootcamp is a 2-day online bootcamp that teaches you the fundamentals of large language models (LLMs) and how to build and deploy LLM-powered applications.

Link to Bootcamp -> Full Stack LLM Bootcamp

Key topics covered:

  • Introduction to LLMs
  • Natural language processing (NLP)
  • Machine learning (ML)
  • Deep learning
  • TensorFlow
  • Building and deploying LLM-powered applications

Instructor details:

The instructors at FSDL are experienced experts in the field of LLMs and generative AI. They have a deep understanding of the theory and practice of LLMs, and they are passionate about teaching others about this exciting new field.

Location and duration:

The FSDL LLM Bootcamp is held online and lasts for 2 days. It is a full-time bootcamp, so you can expect to spend 8-10 hours per day learning and working on projects.

Cost:

The FSDL LLM Bootcamp is free.

Prerequisites:

There are no formal prerequisites for the FSDL LLM Bootcamp. However, it is recommended that you have some basic knowledge of programming and machine learning.

Who should attend?

The FSDL LLM Bootcamp is ideal for anyone who is interested in learning about LLMs and building LLM-powered applications. This includes software engineers, data scientists, researchers, and anyone else who wants to be at the forefront of this rapidly growing field.

Application process:

There is no formal application process for the FSDL LLM Bootcamp. Simply register for the bootcamp on the FSDL website.

AI & Generative AI Bootcamp for end users course overview

The Generative AI Bootcamp for End Users is a 90-hour online bootcamp offered by Koenig Solutions. It is designed to teach beginners and non-technical professionals the fundamentals of artificial intelligence (AI) .

Link to Bootcamp -> Generative AI Bootcamp

Key topics covered:

  • Introduction to AI
  • Machine learning
  • Deep learning
  • Natural language processing (NLP)
  • Computer vision
  • Generative adversarial networks (GANs)
  • Diffusion models
  • Transformers
  • Practical applications of AI

Instructor details:

The instructors at Koenig Solutions are experienced industry professionals with a deep understanding of generative AI. They are passionate about teaching others about this rapidly growing field and helping them develop the skills they need to succeed in the AI workforce.

Location and duration:

The Bootcamp for End Users is held online and lasts for 90 hours. It is a part-time bootcamp, so you can expect to spend 4-6 hours per week learning and working on projects.

Cost:

The Generative AI Bootcamp for End Users costs $999. There are a number of scholarships and payment plans available.

Prerequisites:

There are no formal prerequisites for the Generative AI Bootcamp for End Users. However, it is recommended that you have some basic knowledge of computers and the internet.

Who should attend?

The AI & Generative AI Bootcamp for End Users is ideal for anyone who is interested in learning about AI and generative AI, regardless of their technical background. This includes business professionals, entrepreneurs, students, and anyone else who wants to gain a competitive advantage in the AI-powered world of tomorrow.

Application process:

To apply for the AI & Generative AI Bootcamp for End Users, you will need to complete an online application form. The application process includes a short interview.

Additional information:

This Bootcamp for End Users is a certification program. Upon completion of the bootcamp, you will receive a certificate from Koenig Solutions that verifies your skills in AI and generative AI.

The bootcamp also includes access to a variety of resources, such as online lectures, tutorials, and hands-on projects. These resources will help you solidify your understanding of the material and develop the skills you need to succeed in the AI workforce.


Which LLM bootcamp will you join?

Generative AI is being used to develop new self-driving car algorithms, to create personalized medical treatments, and to generate new marketing campaigns. LLMs are being used to improve the performance of search engines, to develop new educational tools, and to create new forms of art and entertainment.

Overall, generative AI and LLMs are two of the most exciting and promising technologies of our time. By learning about these technologies, we can position ourselves to take advantage of the many opportunities they will create in the years to come.

 

October 27, 2023

LlamaIndex is an orchestration framework for large language model (LLM) applications. LLMs like GPT-4 are pre-trained on massive public datasets, allowing for incredible natural language processing capabilities out of the box. However, their utility is limited without access to your own private or domain-specific data. 

LlamaIndex solves this problem by providing a way to ingest, structure, and access your own data for use with LLMs. It supports a variety of data sources, including APIs, databases, and PDFs.


Learn to build LLM applications                                          

 

Once your data is indexed, it provides a number of ways to interact with it, including: 

  • Natural language querying: You can ask LlamaIndex questions about your data in plain English. For example, you could ask “What are the top 10 revenue-generating products?” or “What are the most common customer complaints?” 
  • Conversation with LLM-powered data agents: It can be used to create chatbots or other conversational interfaces that can access and process your data in real-time. This allows you to build applications that can provide personalized assistance to your users or answer their questions in a comprehensive and informative way. 
  • LLM-powered data analytics: It can also be used to power LLM-based data analytics applications. For example, you could use it to build a system that can automatically generate reports or insights from your data. 

 

Tune in to our Future of Data and AI Podcast featuring Co-founder and CEO of LlamaIndex, Jerry Liu himself!

Key components of LlamaIndex: 

The key components of LlamaIndex are as follows:  

  • Data connectors: These components allow LlamaIndex to ingest data from a variety of sources, such as APIs, databases, and PDFs. The data is converted into a simple document format that is easy for LlamaIndex to process. 
  • Data index: A data structure that stores the data in a way that makes it easy for LlamaIndex to find the relevant information when a user asks a question or starts a conversation. 
  • Retrievers: Retrievers are responsible for finding the most relevant information in the data index based on the user’s query or chat message. 
  • Query engines: Allow users to ask questions about their data in natural language. They accept natural language queries and provide comprehensive and informative responses. 
  • Chat engines: Allow users to have interactive conversations with their data. They maintain a contextual understanding of the conversation history and can provide answers that consider the relevant past context. 

 

 

 

In this tutorial, we will delve into the technical intricacies of constructing intelligent chatbots that leverage advanced technologies. Our example code will illustrate the development of a PDF Q&A chatbot that incorporates the OpenAI language model, VectorStoreIndex for document indexing and Streamlit for user interface design.

Large language model bootcamp

 

Furthermore, the chatbot will be equipped with the Llama Index’s Conversational Retrieval Chain, enabling it to furnish precise responses based on user queries. Let’s embark on this journey into the technical aspects of crafting a highly capable chatbot. 

Importing necessary libraries  

To commence our chatbot project, we need to import crucial libraries and functions. Here’s a breakdown of the libraries we will be utilizing: 

  • LlamaIndex: We harness the power of the Llama Index, a comprehensive framework tailored for developing applications enriched by language models. 
  • Streamlit: Streamlit, a Python library, serves as our toolkit for swiftly constructing web applications with an intuitive interface that facilitates user interaction. 

Streamlit 

Setting OpenAI API key  

To access OpenAI’s language models effectively, it is imperative to configure our API key. Replace the placeholder with your actual OpenAI API key, obtainable from the OpenAI API platform. This key will act as our gateway to the powerful language models offered by OpenAI. Also you can use the dotenv route where you place your OPENAI key in the .env file. 

OpenAPIKey

Setting up the user interface: 

This section delves into the creation of our user interface using Streamlit. The interface is meticulously designed to be clean, user-friendly, and feature-rich. It encompasses a title and a minimalist sidebar, providing an entry point for users to engage with our Q&A chatbot seamlessly.
 

user interface

 

 

Follow Data Science Dojo on Medium to stay updated with LLM and Generative AI 

 

Main function and data loading: 

At the core of our chatbot lies the main function, which orchestrates the entire application logic. We initiate the process by loading data from a specified directory using a SimpleDirectoryReader. This data will serve as the knowledge repository from which our chatbot will draw answers to user inquiries. 

Data loading

 

Creating a service context: 

To enable the advanced natural language processing capabilities of our chatbot, we established a ServiceContext. This context is pre-configured with default settings and an OpenAI language model (llm). It lays the groundwork for our chatbot’s ability to understand and generate responses to user queries effectively. 

service context

 

 

 

 

Building the LlamaIndex: 

The pivotal component of our chatbot’s capabilities is the Llama Index. We construct this index using VectorStoreIndex, a versatile tool that optimizes the stored documents for efficient searching. This step ensures that our chatbot can rapidly retrieve pertinent information when faced with user queries. 

vector store index

 

User input and chat engine: 

Our user interface empowers users to input questions related to the provided data through a text input field. The chat engine processes these queries by harnessing the capabilities of the Llama Index. Subsequently, it generates responses based on the content indexed from the documents. This interaction constitutes the core functionality of our Q&A chatbot. 

 

User input

 

Running the application: 

With all the components in place, we culminate our code by executing the main function. This pivotal step transforms our project into an interactive chatbot. Users can seamlessly pose questions, and the chatbot, equipped with the Llama Index, responds with precise answers drawn from the indexed documents. 

Running the application

 

 

Benefits of using LlamaIndex 

There are a number of benefits to using LlamaIndex to create custom LLM applications: 

  • It is easy to use: Provides a simple and intuitive API for interacting with your data. 
  • It is flexible: Supports a variety of data sources and formats. It also provides a number of plugins and integrations that can be used to extend its functionality. 
  • It is scalable: Scaled to handle large datasets and high traffic volumes. 

In conclusion, this guide has offered a comprehensive roadmap for creating personalized Q&A chatbots with the Llama Index at their core.

By integrating cutting-edge technologies such as OpenAI for language processing, VectorStoreIndex for efficient document indexing, and the Llama Index’s Conversational Retrieval Chain, we have unlocked the potential for engaging, informative, and highly interactive question-answering experiences.

Feel encouraged to explore and expand upon this chatbot project, extending its capabilities to tackle more intricate tasks and challenges within the realm of AI-driven conversational systems. 

September 28, 2023

Shape your model performance using LLM parameters. Imagine you have a super-smart computer program. You type something into it, like a question or a sentence, and you want it to guess what words should come next. This program doesn’t just guess randomly; it’s like a detective that looks at all the possibilities and says, “Hmm, these words are more likely to come next.”

It makes an extensive list of words and says, “Here are all the possible words that could come next, and here’s how likely each one is.” But here’s the catch: it only gives you one word, and that word depends on how you tell the program to make its guess. You set the rules, and the program follows them.

So, it’s like asking your computer buddy to finish your sentences, but it’s super smart and calculates the odds of each word being the right fit based on what you’ve typed before.

That’s how this model works, like a word-guessing detective, giving you one word based on how you want it to guess.

A brief introduction to Large Language Model parameters

Large language model parameters refer to the configuration settings and components that define the behavior of a large language model (LLM), which is a type of artificial intelligence model used for natural language processing tasks.

 

Large language model bootcamp

 

 

How do LLM parameters work

LLM parameters include the architecture, model size, training data, and hyperparameters. The core component is the transformer architecture, which enables LLMs to process and generate text efficiently. LLMs are trained in vast datasets, learning patterns and relationships between words and phrases.

 

llm parameters
LLM parameters

 

They use vectors to represent words numerically, allowing them to understand and generate text. During training, these models adjust their parameters (weights and biases) to minimize the difference between their predictions and the actual data. Let’s have a look at the key parameters in detail.

 

Learn in detail about fine tuning LLMs 

 

1. Model:

The model size refers to the number of parameters in the LLM. A parameter is a variable that is learned by the LLM during training. The model size is typically measured in billions or trillions of parameters. A larger model size will typically result in better performance, but it will also require more computing resources to train and run.

Also, it is a specific instance of an LLM trained on a corpus of text. Different models have varying sizes and are suitable for different tasks. For example, GPT-3 is a large model with 175 billion parameters, making it highly capable in various natural language understanding and generation tasks.

 

2. Number of tokens:

The number of tokens refers to the size of the vocabulary that the LLM is trained on. A token is a unit of text, such as a word, a punctuation mark, or a number. The number of tokens in a vocabulary can vary greatly, from a few thousand to several million. A larger vocabulary allows the LLM to generate more creative and accurate text, but it also requires more computing resources to train and run.

The number of tokens in an LLM’s vocabulary impacts its language understanding. For instance, GPT-2 has a vocabulary size of 1.5 billion tokens. Larger vocabulary allows the model to comprehend a wider range of words and phrases.

 

 

3. Temperature:

The temperature is a parameter that controls the randomness of the LLM’s output. A higher temperature will result in more creative and imaginative text, while a lower temperature will result in more accurate and factual text.

For example, if you set the temperature to 1.0, the LLM will always generate the most likely next word. However, if you set the temperature to 2.0, the LLM will be more likely to generate less likely next words, which could result in more creative text.

 

4. Context window:

The context window is the number of words that the LLM considers when generating text. A larger context window will allow the LLM to generate more contextually relevant text, but it will also make the training process more computationally expensive. For example, if the context window is set to 2, the LLM will consider the two words before and after the current word when generating the next word.

The context window determines how far back in the text the model looks when generating responses. A longer context window enhances coherence in conversation, crucial for chatbots.

For example, when generating a story, a context window of 1024 tokens can ensure consistency and context preservation.

 

Learn about Build custom LLM applications

 

5. Top-k and Top-p:

These techniques filter token selection. Top-k selects the top-k most likely tokens, ensuring high-quality output. Top-p, on the other hand, sets a cumulative probability threshold, retaining tokens with a total probability above it. Top-k is useful for avoiding nonsensical responses, while Top-p can ensure diversity.

For example, if you set Top-k to 10, the LLM will only consider the 10 most probable next words. This will result in more fluent text, but it will also reduce the diversity of the text. If you set Top-p to 0.9, the LLM will only generate words that have a probability of at least 0.9. This will result in more diverse text, but it could also result in less fluent text.

 

6. Stop sequences:

LLMs can be programmed to avoid generating specific sequences, such as profanity or sensitive information. For example, a content moderation system can use stop sequences to prevent the model from generating harmful content.

For example, you could add the stop sequence “spam” to the LLM, so that it would never generate the word “spam”.

 

7. Frequency and presence penalties:

Frequency Penalty penalizes the LLM for generating words that are frequently used. This can be useful for preventing the LLM from generating repetitive text. Presence Penalty penalizes the LLM for generating words that have not been used recently. This can be useful for preventing the LLM from generating irrelevant text.

These penalties influence token generation. A presence penalty discourages the use of specific tokens, while a frequency penalty encourages token use. For instance, in language translation, a frequency penalty can be applied to ensure that rare words are used more often.

 

LLM parameters example

Consider a chatbot using GPT-3 (model). To maintain coherent conversations, it uses a longer context window (context window). To avoid inappropriate responses, it employs stop sequences to filter out offensive content (stop sequences). Temperature is set lower to provide precise, on-topic answers, and Top-k ensures the best token selection for each response (temperature, Top-k).

These parameters enable fine-tuning of LLM behavior, making them adaptable to diverse applications, from chatbots to content generation and translation.

Shape the capabilities of LLMs

LLMs have diverse applications, such as chatbots (e.g., ChatGPT), language translation, text generation, sentiment analysis, and more. They can generate human-like text, answer questions, and perform various language-related tasks. LLMs have found use in automating customer support, content creation, language translation, and data analysis, among other fields.

For example, in customer support, LLMs can provide instant responses to user queries, improving efficiency. In content creation, they can generate articles, reports, and even code snippets based on provided prompts. In language translation, LLMs can translate text between languages with high accuracy.

In summary, large language model parameters are essential for shaping the capabilities and behavior of LLMs, making them powerful tools for a wide range of natural language processing tasks.

 

Learn to build LLM applications

September 11, 2023

Approximately 313 million people speak Arabic, making it the fifth most-spoken language globally.

The United Arab Emirates (UAE) has made significant strides in the field of artificial intelligence and language technology by launching a large Arabic language model. This development involves the creation of advanced AI software, such as Jais, an open-source Arabic Large Language Model (LLM) with high-quality capabilities.

This initiative, driven by organizations like G42 and the Technology Innovation Institute (TII), aims to lead the Gulf region’s adoption of generative AI and elevate Arabic language processing in AI applications. The UAE’s commitment to developing cutting-edge technology like NOOR and Falcon demonstrates its determination to be a global leader in the field of AI and natural language processing.

 

Large language model bootcamp

 

This initiative addresses the gap in the availability of advanced language models for Arabic speakers. Jais incorporates cutting-edge features such as ALiBi position embeddings, enabling it to handle longer inputs for better context handling and accuracy. The launch of Jais contributes to the acceleration of innovation in the Arab world by providing high-quality Arabic language capabilities for AI applications.

 

Learn the top 20 technical terms in the LLM vicinity

 

Jaison is associated with G42, a company subsidiary of Inception, which has released an open-source AI model named “Jais,” an advanced Arabic Large Language Model (LLM). Jais is a transformer-based large language model designed to cater to the significant user base of Arabic speakers, estimated to be over 400 million.

 

NOOR, the new largest NLP Arabic language model | Data Science Dojo
Source: Reddit

Use-cases for the newly introduced Arabic AI model

The Arabic language models, such as “Jais” and “AraGPT2,” are developed to advance the field of natural language processing and AI technology for the Arabic language. They will be used for various applications, including:

  • Enabling more accurate and efficient text generation and understanding in Arabic.
  • Enhancing communication and engagement between Arabic-speaking users and AI systems.
  • Facilitating language translation, sentiment analysis, and information extraction in Arabic content.
  • Boosting the development of AI-driven applications in fields like education, customer service, content creation, and more.
  • Expanding the accessibility of advanced AI technologies to the Arabic-speaking community.
  • Fostering innovation and research in Arabic language processing, contributing to the growth of AI in the Arab world.

These language models aim to bridge the gap in AI technology for Arabic speakers and empower a wide range of industries with improved language-related capabilities.

 

UAE businesses leveraging the Arabic language model

Businesses in the UAE can benefit from Arabic language models in several ways:

  • Enhanced Communication: Arabic language models enable businesses to communicate more effectively with Arabic-speaking customers, fostering better engagement and customer satisfaction.
  • Localized Content: Businesses can create localized marketing campaigns, advertisements, and content that resonates with the local audience, improving brand perception.
  • Customer Support: AI-powered chatbots and customer support systems can be developed in Arabic, providing immediate assistance to customers in their native language.
  • Content Generation: Arabic language models can assist in generating high-quality content in Arabic, from articles to social media posts, saving time and resources.
  • Data Analysis: Businesses can analyze Arabic-language data to gain insights into customer preferences, market trends, and sentiment, enabling informed decision-making.
  • Innovation: Arabic language models can fuel innovation in various sectors, from healthcare to finance, by providing advanced AI capabilities tailored to the local context.
  • Efficient Translation: Enterprises dealing with multilingual operations can benefit from accurate and efficient translation services for documents, contracts, and communication.
  • Educational Resources: Arabic language models can aid in developing educational resources, online courses, and e-learning platforms to cater to Arabic-speaking learners.

By leveraging Arabic language models like “Jais,” businesses can tap into the vast potential of AI to enhance their operations, communication, and growth strategies in the UAE and beyond.

Learn to build LLM applications                                          

August 31, 2023

Prompt engineering is the process of designing and refining prompts that are given to large language models (LLMs) to get them to generate the desired output.

The beginning of prompt engineering

The history of prompt engineering can be traced back to the early days of artificial intelligence when researchers were experimenting with ways to get computers to understand and respond to natural language.

Learn in detail about —> Prompt Engineering

Best practices for prompt engineering
Best practices for prompt engineering

One of the earliest examples of prompt engineering was the work of Terry Winograd in the 1970s. Winograd developed a system called SHRDLU that could answer questions about a simple block world. SHRDLU was able to do this by using a set of prompts that were designed to help it understand the context of the question.

Large language model bootcamp

In the 1980s, prompt engineering became more sophisticated as researchers developed new techniques for training LLMs. One of the most important techniques was backpropagation, which allowed Large Language Models to learn from their mistakes. This made it possible to train LLMs on much larger datasets, leading to significant performance improvements.

In the 2010s, the development of deep learning led to a new wave of progress in prompt engineering. Deep learning models are able to learn much more complex relationships between words than previous models. This has made it possible to create prompts that are much more effective at controlling the output of LLMs.

Today, prompt engineering is a critical tool for researchers and developers who are working with LLMs. It is used in a wide variety of applications, including machine translation, text summarization, and creative writing.

Myths vs facts in prompt engineering

Have you tried any of these fun prompts?

  • In the field of machine translation, one researcher tried to get an LLM to translate the phrase “I am a large language model” into French. The LLM responded with “Je suis un grand modèle linguistique”, which is a grammatically correct translation, but it also happens to be the name of a popular French cheese.
  • In the field of text summarization, one researcher tried to get an LLM to summarize the plot of the movie “The Shawshank Redemption”. The LLM responded with a summary that was surprisingly accurate, but it also included a number of jokes and puns.
  • In the field of creative writing, one researcher tried to get an LLM to write a poem about a cat. The LLM responded with a poem that was both funny and touching.

These are just a few examples of the many funny prompts that people have tried with LLMs. As LLMs become more powerful, it is likely that we will see even more creative and entertaining uses of prompt engineering.

Want to improve your prompting skills? Click below:

Learn More                  

Some unknown facts about Prompt Engineering

  • It is a relatively new field, and there is still much that we do not know about it. However, it is a rapidly growing field, and there are many exciting new developments happening all the time.
  • The effectiveness of a prompt can depend on a number of factors, including the specific LLM being used, the training data that the LLM has been trained in, and the context in which the prompt is being used.
  • There are a number of different techniques that can be used for prompt engineering, and the best technique to use will depend on the specific application.
  • It can be used to control a wide variety of aspects of the output of an LLM, including the length, style, and content of the output.
  • It can be used to generate creative and interesting text, as well as to solve complex problems.
  • It is a powerful tool that can be used to unlock the full potential of LLMs.

 

Learn how to become a prompt engineer in 10 steps 

10 steps to become a prompt engineer
10 steps to become a prompt engineer

Here are some specific examples of important and unknown facts about prompting:

  • It is possible to use prompts to control the creativity of an LLM. For example, one study found that adding the phrase “in a creative way” to a prompt led to more creative outputs from the LLM.
  • Prompts can be used to generate text that is consistent with a particular style. For example, one study found that adding the phrase “in the style of Shakespeare” to a prompt led to outputs that were more Shakespearean in style.
  • Prompts can be used to solve complex problems. For example, one study found that adding the phrase “prove that” to a prompt led to the LLM generating mathematical proofs.
  • It is a complex and challenging task. There is no one-size-fits-all approach to prompt engineering, and the best way to create effective prompts will vary depending on the specific application.
  • It is a rapidly evolving field. There are new developments happening all the time, and the field is constantly growing and changing.

Most popular myths and facts of prompt engineering

In this ever-evolving realm, it’s crucial to discern fact from fiction to stay ahead of the curve. Our team of experts has meticulously sifted through the noise to present you with the most accurate insights, dispelling myths that might have clouded your understanding. Let’s delve into the heart of prompting and uncover the truths that can drive your success.

Myth: Prompt engineering is just about keywords

Fact: Prompt engineering is a symphony of elements

Gone are the days when prompt engineering was solely about sprinkling keywords like confetti. Today, it’s a meticulous symphony of various components working harmoniously. While keywords remain pivotal, they’re just one part of the grand orchestra. Structured data, user intent analysis, and contextual relevance are the unsung heroes that make your prompt engineering soar. Balancing these elements crafts a narrative that resonates with both users and search engines.

Myth: More prompts, higher results

Fact: Quality over quantity

Quantity might impress at first glance, but it’s quality that truly wields power in the world of prompt engineering. Crafting a handful of compelling, highly relevant prompts that align seamlessly with your content yields far superior results than flooding your page with irrelevant ones. Remember, it’s the value you provide that keeps users engaged, not the sheer number of prompts you throw their way.

Myth: Prompt engineering is a one-time task

Fact: Ongoing optimization is the key

Imagine your website as a garden that requires constant tending. Similarly, prompt engineering demands continuous attention. Regularly analyzing the performance of your prompts and adapting to shifting trends is paramount. This ensures that your content remains evergreen and resonates with the dynamic preferences of your audience.

Myth: Creativity has no place in prompt engineering

Fact: Creativity elevates engagement

While prompt engineering involves a systematic approach, creativity is the secret ingredient that adds flavor to the mix. Crafting prompts that spark curiosity, evoke emotion, or present a unique perspective can exponentially boost user engagement. Metaphors, analogies, and storytelling are potent tools that, when woven into your prompts, make your content unforgettable.

Myth: Only text prompts matter

Fact: Diversify with various formats

Text prompts are undeniably significant, but limiting yourself to them is a missed opportunity. Embrace a diverse range of prompt formats to cater to different learning styles and preferences.

Visual prompts, such as infographics and videos, engage visual learners, while audio prompts cater to those who prefer auditory learning. The more versatile your prompt formats, the broader your audience reaches.

Myth: Prompt engineering and SEO are unrelated

Fact: Symbiotic relationship

Prompt engineering and SEO are not isolated islands; they’re interconnected domains that thrive on collaboration. Solid prompt engineering bolsters SEO by providing search engines with the context they crave. Conversely, a well-optimized website enhances prompt engineering, as it ensures your content is easily discoverable by your target audience.

Myth: Complex language boosts credibility

Fact: Clarity trumps complexity

Using complex jargon might seem like a credibility booster, but it often does more harm than good. Clear, concise prompts that resonate with a broader audience hold more weight. Remember, the goal is not to showcase your vocabulary prowess but to communicate effectively and establish a genuine connection with your readers.

Myth: Prompt engineering is set-and-forget

Fact: Continuous monitoring is vital

Once you’ve orchestrated your prompts, it’s not time to sit back and relax. The digital landscape is in perpetual motion, and so should be your approach to prompt engineering. Monitor the performance of your prompts regularly, employing data analytics to identify patterns and make informed adjustments that keep your content relevant and engaging.

Myth: Only experts can master prompt engineering

Fact: Learning and iteration lead to mastery

While prompt engineering might appear daunting, it’s a skill that can be honed with dedication and a willingness to learn. Don’t shy away from experimentation and iteration. Embrace the insights gained from your data, be open to refining your approach, and gradually you’ll find yourself mastering the art of prompt engineering.

Get on the journey of prompt engineering

Prompt engineering is a dynamic discipline that demands both strategy and creativity. Dispelling these myths and embracing the facts will propel your content to new heights, setting you apart from the competition. Remember, prompt engineering is not a one-size-fits-all solution; it’s an evolving journey of discovery that, when approached with dedication and insight, can yield remarkable results

August 21, 2023

Large language models (LLMs) are one of the most exciting developments in artificial intelligence. They have the potential to revolutionize a wide range of industries, from healthcare to customer service to education. But in order to realize this potential, we need more people who know how to build and deploy LLM applications.

That’s where this blog comes in. In this blog, we’re going to discuss the importance of learning to build your own LLM application, and we’re going to provide a roadmap for becoming a large language model developer.

Large language model bootcamp

We believe this blog will be a valuable resource for anyone interested in learning more about LLMs and how to build and deploy Large Language Model applications. So, whether you’re a student, a software engineer, or a business leader, we encourage you to read on!

Why do I need to build a custom LLM application?

Here are some of the benefits of learning to build your own LLM application:

  • You’ll be able to create innovative new applications that can solve real-world problems.
  • You’ll be able to use LLMs to improve the efficiency and effectiveness of your existing applications.
  • You’ll be able to gain a competitive edge in your industry.
  • You’ll be able to contribute to the development of this exciting new field of artificial intelligence.

 

Read more —> How to build and deploy custom llm application for your business

 

Roadmap to build custom LLM applications

If you’re interested in learning more about LLMs and how to build and deploy LLM applications, then this blog is for you. We’ll provide you with the information you need to get started on your journey to becoming a large language model developer step by step.

build llm applications

1. Introduction to Generative AI:

Generative AI is a type of artificial intelligence that can create new content, such as text, images, or music. Large language models (LLMs) are a type of generative AI that can generate text that is often indistinguishable from human-written text. In today’s business world, Generative AI is being used in a variety of industries, such as healthcare, marketing, and entertainment.

 

Introduction to Generative AI - LLM Bootcamp Data Science Dojo
Introduction to Generative AI – LLM Bootcamp Data Science Dojo

 

For example, in healthcare, generative AI is being used to develop new drugs and treatments, and to create personalized medical plans for patients. In marketing, generative AI is being used to create personalized advertising campaigns and to generate product descriptions. In entertainment, generative AI is being used to create new forms of art, music, and literature.

 

2. Emerging architectures for LLM applications:

There are a number of emerging architectures for LLM applications, such as Transformer-based models, graph neural networks, and Bayesian models. These architectures are being used to develop new LLM applications in a variety of fields, such as natural language processing, machine translation, and healthcare.

 

Emerging architectures for llm applications - LLM Bootcamp Data Science Dojo
Emerging architectures for llm applications – LLM Bootcamp Data Science Dojo

 

There are a number of emerging architectures for LLM applications, such as Transformer-based models, graph neural networks, and Bayesian models. These architectures are being used to develop new LLM applications in a variety of fields, such as natural language processing, machine translation, and healthcare.

For example, Transformer-based models are being used to develop new machine translation models that can translate text between languages more accurately than ever before. Graph neural networks are being used to develop new fraud detection models that can identify fraudulent transactions more effectively. Bayesian models are being used to develop new medical diagnosis models that can diagnose diseases more accurately.

 

3. Embeddings:

Embeddings are a type of representation that is used to encode words or phrases into a vector space. This allows LLMs to understand the meaning of words and phrases in context.

 

Embeddings
Embeddings – LLM Bootcamp Data Science Dojo

 

Embeddings are used in a variety of LLM applications, such as machine translation, question answering, and text summarization. For example, in machine translation, embeddings are used to represent words and phrases in a way that allows LLMs to understand the meaning of the text in both languages.

In question answering, embeddings are used to represent the question and the answer text in a way that allows LLMs to find the answer to the question. In text summarization, embeddings are used to represent the text in a way that allows LLMs to generate a summary that captures the key points of the text.

 

4. Attention mechanism and transformers:

The attention mechanism is a technique that allows LLMs to focus on specific parts of a sentence when generating text. Transformers are a type of neural network that uses the attention mechanism to achieve state-of-the-art results in natural language processing tasks.

 

Attention mechanism and transformers - LLM
Attention mechanism and transformers – LLM Bootcamp Data Science Dojo

 

The attention mechanism is used in a variety of LLM applications, such as machine translation, question answering, and text summarization. For example, in machine translation, the attention mechanism is used to allow LLMs to focus on the most important parts of the source text when generating the translated text.

In answering the question, the attention mechanism is used to allow LLMs to focus on the most important parts of the question when finding the answer. In text summarization, the attention mechanism is used to allow LLMs to focus on the most important parts of the text when generating the summary.

 

5. Vector databases:

Vector databases are a type of database that stores data in vectors. This allows LLMs to access and process data more efficiently.

 

Vector databases - LLM Bootcamp Data Science Dojo
Vector databases – LLM Bootcamp Data Science Dojo

 

Vector databases are used in a variety of LLM applications, such as machine learning, natural language processing, and recommender systems.

For example, in machine learning, vector databases are used to store the training data for machine learning models. In natural language processing, vector databases are used to store the vocabulary and grammar for natural language processing models. In recommender systems, vector databases are used to store the user preferences for different products and services.

 

6. Semantic search:

Semantic search is a type of search that understands the meaning of the search query and returns results that are relevant to the user’s intent. LLMs can be used to power semantic search engines, which can provide more accurate and relevant results than traditional keyword-based search engines.

Semantic search - LLM Bootcamp Data Science Dojo
Semantic search – LLM Bootcamp Data Science Dojo

Semantic search is used in a variety of industries, such as e-commerce, customer service, and research. For example, in e-commerce, semantic search is used to help users find products that they are interested in, even if they don’t know the exact name of the product.

In customer service, semantic search is used to help customer service representatives find the information they need to answer customer questions quickly and accurately. In research, semantic search is used to help researchers find relevant research papers and datasets.

 

7. Prompt engineering:

Prompt engineering is the process of creating prompts that are used to guide LLMs to generate text that is relevant to the user’s task. Prompts can be used to generate text for a variety of tasks, such as writing different kinds of creative content, translating languages, and answering questions.

 

Prompt engineering - LLM Bootcamp Data Science Dojo
Prompt engineering – LLM Bootcamp Data Science Dojo

 

Prompt engineering is used in a variety of LLM applications, such as creative writing, machine translation, and question answering. For example, in creative writing, prompt engineering is used to help LLMs generate different creative text formats, such as poems, code, scripts, musical pieces, email, letters, etc.

In machine translation, prompt engineering is used to help LLMs translate text between languages more accurately. In answering questions, prompt engineering is used to help LLMs find the answer to a question more accurately.

 

8. Fine-tuning of foundation models:

Foundation models are large language models that are pre-trained on massive datasets. Fine-tuning is the process of adjusting the parameters of a foundation model to make it better at a specific task. Fine-tuning can be used to improve the performance of LLMs on a variety of tasks, such as machine translation, question answering, and text summarization.

 

Fine-tuning of Foundation Models - LLM Bootcamp Data Science Dojo
Fine-tuning of Foundation Models – LLM Bootcamp Data Science Dojo

 

Foundation models are pre-trained on massive datasets. Fine-tuning is the process of adjusting the parameters of a foundation model to make it better at a specific task. Fine-tuning is used to improve the performance of LLMs on a variety of tasks, such as machine translation, question answering, and text summarization.

For example, LLMs can be fine-tuned to translate text between specific languages, to answer questions about specific topics, or to summarize text in a specific style.

 

9. Orchestration frameworks:

Orchestration frameworks are tools that help developers to manage and deploy LLMs. These frameworks can be used to scale LLMs to large datasets and to deploy them to production environments.

 

Orchestration frameworks - LLM Bootcamp Data Science Dojo
Orchestration frameworks – LLM Bootcamp Data Science Dojo

 

Orchestration frameworks are used to manage and deploy LLMs. These frameworks can be used to scale LLMs to large datasets and to deploy them to production environments. For example, orchestration frameworks can be used to manage the training of LLMs, to deploy LLMs to production servers, and to monitor the performance of LLMs

 

10. LangChain:

LangChain is a framework for building LLM applications. It provides a number of features that make it easy to build and deploy LLM applications, such as a pre-trained language model, a prompt engineering library, and an orchestration framework.

 

Langchain - LLM Bootcamp Data Science Dojo
Langchain – LLM Bootcamp Data Science Dojo

 

Overall, LangChain is a powerful and versatile framework that can be used to create a wide variety of LLM-powered applications. If you are looking for a framework that is easy to use, flexible, scalable, and has strong community support, then LangChain is a good option.

11. Autonomous agents:

Autonomous agents are software programs that can act independently to achieve a goal. LLMs can be used to power autonomous agents, which can be used for a variety of tasks, such as customer service, fraud detection, and medical diagnosis.

 

Attention mechanism and transformers - LLM
Attention mechanism and transformers – LLM Bootcamp Data Science Dojo

 

12. LLM Ops:

LLM Ops is the process of managing and operating LLMs. This includes tasks such as monitoring the performance of LLMs, detecting and correcting errors, and upgrading Large Language Models to new versions.

 

LLM Ops - LLM Bootcamp Data Science Dojo
LLM Ops – LLM Bootcamp Data Science Dojo

 

13. Recommended projects:

Recommended projects - LLM Bootcamp Data Science Dojo
Recommended projects – LLM Bootcamp Data Science Dojo

 

There are a number of recommended projects for developers who are interested in learning more about LLMs. These projects include:

  • Chatbots: LLMs can be used to create chatbots that can hold natural conversations with users. This can be used for a variety of purposes, such as customer service, education, and entertainment. For example, the Google Assistant uses LLMs to answer questions, provide directions, and control smart home devices.
  • Text generation: LLMs can be used to generate text, such as news articles, creative writing, and code. This can be used for a variety of purposes, such as marketing, content creation, and software development. For example, the OpenAI GPT-3 language model has been used to generate realistic-looking news articles and creative writing.
  • Translation: LLMs can be used to translate text from one language to another. This can be used for a variety of purposes, such as travel, business, and education. For example, the Google Translate app uses LLMs to translate text between over 100 languages.
  • Question answering: LLMs can be used to answer questions about a variety of topics. This can be used for a variety of purposes, such as research, education, and customer service. For example, the Google Search engine uses LLMs to provide answers to questions that users type into the search bar.
  • Code generation: LLMs can be used to generate code, such as Python scripts and Java classes. This can be used for a variety of purposes, such as software development and automation. For example, the GitHub Copilot tool uses LLMs to help developers write code more quickly and easily.
  • Data analysis: LLMs can be used to analyze large datasets of text and code. This can be used for a variety of purposes, such as fraud detection, risk assessment, and customer segmentation. For example, the Palantir Foundry platform uses LLMs to analyze data from a variety of sources to help businesses make better decisions.
  • Creative writing: LLMs can be used to generate creative text formats, such as poems, code, scripts, musical pieces, email, letters, etc. This can be used for a variety of purposes, such as entertainment, education, and marketing. For example, the Bard language model can be used to generate different creative text formats, such as poems, code, scripts, musical pieces, email, letters, etc.

 

Large Language Models Bootcamp: Learn to build your own LLM applications

Data Science Dojo’s Large Language Models Bootcamp  will teach you everything you need to know to build and deploy your own LLM applications. You’ll learn about the basics of LLMs, how to train LLMs, and how to use LLMs to build a variety of applications.

The bootcamp will be taught by experienced instructors who are experts in the field of large language models. You’ll also get hands-on experience with LLMs by building and deploying your own applications.

If you’re interested in learning more about LLMs and how to build and deploy LLM applications, then I encourage you to enroll in Data Science Dojo’s Large Language Models Bootcamp. This bootcamp is the perfect way to get started on your journey to becoming a large language model developer.

Learn More                  

 

August 9, 2023

Large language models (LLMs) are a type of artificial intelligence (AI) that are trained on a massive dataset of text and code. They can generate text, translate languages, write different kinds of creative content, and answer your questions in an informative way.

Before we dive into the impact Large Language Models will create on different areas of work, let’s test your knowledge in the domain.

Are you a Large Language Models expert? Test your knowledge with our quiz | Data Science Dojo

Large Language Models quiz to test your knowledge

 

 

Are you interested in leveling up your knowledge of Large Language Models? Click below:

Learn More                  

 

Why are LLMs the next big thing to learn about?

Knowing about LLMs can be important for scaling your career in a number of ways.

 

Large language model bootcamp

 

  • LLMs are becoming increasingly powerful and sophisticated. As LLMs become more powerful and sophisticated, they are being used in a variety of applications, such as machine translation, chatbots, and creative writing. This means that there is a growing demand for people who understand how to use LLMs effectively.
  • Prompt engineering is a valuable skill that can be used to improve the performance of LLMs in a variety of tasks. By understanding how to engineer prompts, you can get the most out of LLMs and use them to accomplish a variety of tasks. This is a valuable skill that can be used to improve the performance of LLMs in a variety of tasks.
  • Learning about LLMs and prompt engineering can help you to stay ahead of the curve in the field of AI. As LLMs become more powerful and sophisticated, they will have a significant impact on a variety of industries. By understanding how LLMs work, you will be better prepared to take advantage of this technology in the future.

Here are some specific examples of how knowing about LLMs can help you to scale your career:

  • If you are a software engineer, you can use LLMs to automate tasks, such as code generation and testing. This can free up your time to focus on more strategic work.
  • If you are a data scientist, you can use LLMs to analyze large datasets and extract insights. This can help you to make better decisions and improve your business performance.
  • If you are a marketer, you can use LLMs to create personalized content and generate leads. This can help you to reach your target audience and grow your business.

 

Overall, knowing about LLMs can be a valuable asset for anyone who is looking to scale their career. By understanding how LLMs work and how to use them effectively, you can become a more valuable asset to your team and your company.

Here are some additional reasons why knowing about LLMs can be important for scaling your career:

  • LLMs are becoming increasingly popular. As LLMs become more popular, there will be a growing demand for people who understand how to use them effectively. This means that there will be more opportunities for people who have knowledge of LLMs.
  • LLMs are a rapidly developing field. The field of LLMs is constantly evolving, and there are new developments happening all the time. This means that there is always something new to learn about LLMs, which can help you to stay ahead of the curve in your career.
  • LLMs are a powerful tool that can be used to solve a variety of problems. LLMs can be used to solve a variety of problems, from machine translation to creative writing. This means that there are many different ways that you can use your knowledge of LLMs to make a positive impact in the world.

 

Read more about —->> How to deploy custom LLM applications for your business 

August 1, 2023

A custom large language model (LLM) application is a software application that is built using a custom LLM. Custom LLMs are trained on a specific dataset of text and code, which allows them to be more accurate and relevant to the specific needs of the application.

Common LLM applications

There are many different ways to use custom LLM applications. Some common applications include:

  • Chatbots and virtual assistants: Custom LLMs can be used to create chatbots and virtual assistants that can understand and respond to natural language queries. This can be used to improve customer service, provide product recommendations, or automate tasks.
  • Content generation: Custom LLMs can be used to generate content, such as articles, blog posts, or even creative text formats, such as poems, code, scripts, musical pieces, emails, letters, etc. This can save businesses time and money, and it can also help them to create more engaging and informative content.
  • Language translation: Custom LLMs can be used to translate text from one language to another. This can be useful for businesses that operate in multiple languages, or for individuals who need to translate documents or websites.
  • Sentiment analysis and text classification: Custom LLMs can be used to analyze text and classify it according to its sentiment or topic. This can be used to understand customer feedback, identify trends in social media, or classify documents.

 

Get registered in LLM Bootcamp and learn to build your own custom LLM application today

Large language model bootcamp

Why you must get a custom LLM application for your business

Custom LLM applications offer a number of benefits over off-the-shelf LLM applications.

First, they can be more accurate and relevant to the specific needs of the application.

Second, they can be customized to meet the specific requirements of the business.

Third, they can be deployed on-premises, which gives businesses more control over their data and security.

 

large language models
Source – Evan Kirstel

Advantages to get custom LLM applications

Furthermore, here are some of the most important benefits listed to get custom LLM application:

  • Accuracy: Custom LLM applications can be more accurate than off-the-shelf LLM applications because they are trained on a specific dataset of text and code that is relevant to the specific needs of the enterprise. This can lead to better results in tasks such as chatbots, content generation, and language translation.
  • Relevancy: Custom LLM applications can be more relevant to the specific needs of the enterprise because they are trained on a specific dataset of text and code that is relevant to the enterprise’s industry or business domain. This can lead to better results in tasks such as sentiment analysis, text classification, and customer service.
  • Customization: Custom LLM applications can be customized to meet the specific requirements of the enterprise. This can include things like the specific tasks that the application needs to perform, the specific language that the application needs to understand, and the specific format that the application needs to output.
  • Control: Custom LLM applications can be deployed on-premises, which gives the enterprise more control over their data and security. This is important for enterprises that need to comply with regulations or that need to protect sensitive data.
  • Innovation: Custom LLM applications can help enterprises to innovate and stay ahead of the competition. This is because custom LLM applications can be used to develop new products and services, to improve existing products and services, and to automate tasks.

 

 

Overall, there are many reasons why enterprises should learn building custom large language models applications. These applications can offer a number of benefits, including accuracy, relevance, customization, control, and innovation.

In addition to the benefits listed above, there are a few other reasons why enterprises might want to learn building custom LLM applications. First, custom LLM applications can be a valuable tool for research and development.

By building their own LLMs, enterprises can gain a deeper understanding of how these models work and how they can be used to solve real-world problems. Second, custom LLM applications can be a way for enterprises to differentiate themselves from their competitors.

By building their own LLMs, enterprises can create applications that are more accurate, relevant, and customizable than those that are available off-the-shelf. Finally, custom LLM applications can be a way for enterprises to save money. By building their own LLMs, enterprises can avoid the high cost of licensing or purchasing off-the-shelf LLMs.

Of course, there are also some challenges associated with building custom LLM applications. These challenges include the need for large amounts of data, the need for specialized skills, and the need for a significant amount of time and resources. However, the benefits of building custom LLM applications can outweigh the challenges for many enterprises.

 

Things to consider before having a custom LLM application

If you are considering using a custom LLM application, there are a few things you should keep in mind. First, you need to have a clear understanding of your specific needs. What do you want the application to do? What kind of data will you be using to train the LLM? Second, you need to make sure that you have the resources to develop and deploy the application.

Custom LLM applications can be complex and time-consuming to develop. Finally, you need to consider the cost of developing and deploying the application. Custom LLM applications can be more expensive than off-the-shelf LLM applications.

However, if you are looking for a powerful and accurate LLM application that can be customized to meet your specific needs, then a custom LLM application is a good option.

 

List of enterprises using custom Large Language Models

Here is an example of a company using custom LLM application in the company:

Google:

Google is one of the pioneers in the field of large language models. The company has been using custom LLMs for a variety of purposes, including:

  • Chatbots: Google uses custom LLMs to power its chatbots, such as Google Assistant and Google Allo. These chatbots can answer customer questions, provide product recommendations, and even book appointments.
  • Content generation: Google uses custom LLMs to generate content, such as articles, blog posts, and even creative text formats. This content is used on Google’s own websites and products, as well as by third-party publishers.
  • Language translation: Google uses custom LLMs to power its language translation service, Google Translate. This service allows users to translate text from one language to another in real time.
  • Sentiment analysis and text classification: Google uses custom LLMs to analyze text and classify it according to its sentiment or topic. This information is used to improve Google’s search results, as well as to provide insights into customer behavior.

Google is just one example of a company that is using custom LLM applications. As LLM technology continues to develop, we can expect to see even more companies adopting these powerful tools.

 

Amazon:

Amazon uses custom LLMs to power its customer service chatbots, as well as to generate product descriptions and recommendations.

 

Microsoft:

Microsoft uses custom LLMs to power its chatbots, as well as to develop new features for its products, such as Office 365 and Azure.

 

IBM:

IBM uses custom LLMs to power its Watson cognitive computing platform. Watson is used in a variety of industries, including healthcare, finance, and customer service.

 

Salesforce:

Salesforce uses custom LLMs to power its customer relationship management (CRM) platform. The platform uses LLMs to generate personalized marketing campaigns, qualify leads, and close deals.

These are just a few examples of the many companies that are using custom LLM applications. As LLM technology continues to develop, we can expect to see even more companies adopting these powerful tools.

 

Why LLM Bootcamp is necessary to upscale your skills

A LLM bootcamp can help an individual to learn to build their own custom large language model application by providing them with the knowledge and skills they need to do so. Bootcamps typically cover topics such as:

  • The basics of large language models
  • How to train a large language model
  • How to use a large language model to build applications
  • The ethical considerations of using large language models

In addition to providing knowledge and skills, bootcamps also provide a community of learners who can support each other and learn from each other. This can be a valuable resource for individuals who are new to the field of large language models.

Learning large language models can help professionals to create industry specific LLM applications and improve their processes in a number of ways. For example, LLMs can be used to:

  • Generate content
  • Answer questions
  • Translate languages
  • Classify text
  • Analyze sentiment
  • Generate creative text formats

These applications can be used to improve a variety of processes, such as:

  • Customer service
  • Sales and marketing
  • Product development
  • Research and development

By learning about large language models, professionals can gain the skills they need to create these applications and improve their processes.

Here are some specific examples of how LLMs can be used to improve industry processes:

  • Customer service: LLMs can be used to create chatbots that can answer customer questions and resolve issues 24/7. This can free up human customer service representatives to focus on more complex issues.
  • Sales and marketing: LLMs can be used to generate personalized marketing campaigns that are more likely to resonate with customers. This can lead to increased sales and conversions.
  • Product development: LLMs can be used to gather feedback from customers, identify new product opportunities, and develop new products and features. This can help businesses to stay ahead of the competition.
  • Research and development: LLMs can be used to conduct research, develop new algorithms, and explore new applications for LLMs. This can help businesses to innovate and stay ahead of the curve.

These are just a few examples of how LLMs can be used to improve industry processes. As LLM technology continues to develop, we can expect to see even more innovative and groundbreaking applications for these powerful tools.

 

Get your custom LLM application today

In this blog, we discussed the benefits of building custom large language model applications. We also talked about how to build and deploy these applications. We concluded by discussing how LLM bootcamps can help individuals learn how to build these applications.

We hope that this blog has given you a better understanding of the benefits of custom LLM applications and how to build and deploy them. If you are interested in learning more about this topic, we encourage you to check out the resources that we have provided.

We believe that custom LLM applications have the potential to revolutionize a variety of industries. We are excited to see how these applications are used in the future. Click below for more information:

 

Learn More                  

July 27, 2023

Technology has profoundly impacted the legal profession, changing how lawyers work and the services they provide to clients. In the past, lawyers spent a lot of time on tasks like manually researching case law and drafting documents. But now, LLM for lawyers can do these tasks much more quickly and efficiently.

 

Large language model bootcamp

 

For example, Electronic Document Management Systems (EDMS) allow lawyers to store and retrieve documents electronically, which saves time and reduces the risk of lost or misplaced documents. Case management software can help lawyers track deadlines, organize their case files, and communicate with clients. And online research tools make it easy for lawyers to find the latest case law and legal precedent.

These technological advancements have made it possible for lawyers to handle more cases and provide better service to their clients. But they have also changed the role of the lawyer. In the past, lawyers were primarily legal experts who provided advice and representation to clients. But now, lawyers are also technology experts who need to be able to use technology to their advantage.

This means that lawyers need to be comfortable using technology and have a basic understanding of how it works. They also need to be able to identify the right technological tools for their needs and use them effectively.

The future of the legal profession is likely to be even more technology driven. As artificial intelligence (AI) and other modern technologies become more sophisticated, they will be able to automate even more legal tasks. This will free lawyers to focus on more complex and strategic work.

But it’s important to remember that technology is just a tool. It can’t replace the human touch that is essential to the legal profession. Lawyers will always need to be able to think critically, solve problems, and communicate effectively.

 

Read more about —-> Beginner’s guide to Large Language Models

 

So, while technology is changing the legal profession, it’s not replacing lawyers. It’s simply making them more efficient and effective. And that’s a good thing for both lawyers and their clients.

 

High- tech transforming role of attorneys

LLM for lawyers
LLM for lawyers

 

Here are some specific examples of how technology has changed the role of attorneys:

  • Electronic discovery: This technology allows attorneys to search and review large amounts of electronic data, which can be a huge time-saver in complex litigation.
  • Legal research: Online legal research tools have made it much easier for attorneys to find the latest case law and legal precedent.
  • Document automation: This technology allows attorneys to create and populate legal documents with ease, which can save a lot of time and effort.
  • Online communication: Attorneys can now communicate with clients and colleagues from anywhere in the world, which can be a huge benefit for businesses with international clients.

 

Enrich precedents using LLMs

Large Language Models (LLMs) can be used to enrich precedents in a number of ways, including:

  • Identifying relevant precedents: AI can be used to search through large datasets of legal documents to identify precedents that are relevant to a particular case. This can save lawyers a lot of time and effort, as they no longer have to manually search through case law.
  • Analyzing precedents: AI can be used to analyze precedents to identify key legal concepts and arguments. This can help lawyers to better understand the precedents and to use them more effectively in their own cases.
  • Generating legal arguments: AI can be used to generate legal arguments based on precedents. This can help lawyers to quickly and easily develop strong legal arguments.
  • Predicting the outcome of cases: AI can be used to predict the outcome of cases based on precedents. This can help lawyers to make informed decisions about how to proceed with their cases.

Here are some specific examples of how LLMs can be used to enrich precedents:

  • Search through a database of case law to identify all of the cases that have been decided on a particular legal issue. This would allow a lawyer to quickly and easily see how the issue has been decided in the past, and to identify the key legal concepts and arguments that have been used in those cases.
  • Analyze a precedent to identify the key legal concepts and arguments that are used in the case. This would help a lawyer to better understand the precedent and to use it more effectively in their own cases.
  • Generate a legal argument based on a precedent. This would allow a lawyer to quickly and easily develop a strong legal argument that is supported by the precedent.
  • Predict the outcome of a case based on precedents. This would help a lawyer to make informed decisions about how to proceed with their case.

Large language model bootcamp

 

It is important to note that AI and LLMs are still under development, and they are not yet perfect. However, they have the potential to revolutionize the way that lawyers work with precedents. As AI and LLMs continue to develop, they are likely to become even more powerful tools for enriching precedents and for helping lawyers to win their cases.

 

A use case of LLM for Lawyers

Here is a real case scenario of large language models being used by a lawyer or attorney:

A lawyer is representing a client who is being sued for copyright infringement. The lawyer knows that there are a number of precedents that could be relevant to the case, but they don’t have the time to manually search through all of the case law.

The lawyer decides to use a large language model to help them identify relevant precedents. The lawyer gives the large language model a few key terms related to the case, and the large language model quickly identifies a number of precedents that are relevant to the case. The lawyer then reviews the precedents and uses them to develop a legal argument for their client.

In this case, the large language model helped the lawyer to identify relevant precedents quickly and easily. This saved the lawyer a lot of time and effort, and it allowed them to focus on developing a strong legal argument for their client.

Here are some other potential case scenarios where large language models could be used by lawyers or attorneys:

  • Preparing a contract and wants to make sure that the contract is enforceable. The lawyer could use a large language model to analyze the contract and identify any potential problems.
  • Defending a client in a criminal case and wants to find evidence that could exonerate their client. The lawyer could use a large language model to search through large datasets of data, such as social media posts and emails, to find potential evidence.
  • Representing a client in a class action lawsuit and wanting to estimate the damages that their client has suffered. The lawyer could use a large language model to analyze data, such as financial records, to estimate the damages.

 

Scale your case with AI clause assistant

AI Clause Assistant is a tool that can help you to improve your contracts by generating suggestions or improvements for existing clauses and definitions. It can also help you to write revisions without leaving your contract, and to browse through alternative versions to select the snippet that resonates most.

Here are some examples of how AI Clause Assistant can be used:

  • Drafting a contract for a new software development project. You want to make sure that the contract includes a clause that defines the scope of work. You can use AI Clause Assistant to generate a list of suggested clauses that you can use to define the scope of work.
  • Reviewing a contract that you have received from a vendor. You want to make sure that the contract includes a clause that protects your intellectual property. You can use AI Clause Assistant to generate a list of suggested clauses that you can use to protect your intellectual property.
  • Revising a contract that you have already signed. You want to make some changes to the contract, but you want to make sure that the changes are enforceable. You can use AI Clause Assistant to generate a list of suggested changes that you can make to the contract.

Here are some of the benefits of using AI Clause Assistant:

  • Save time and effort by generating suggestions for clauses and definitions.
  • Improve the quality of your contracts by providing you with suggestions that are tailored to your specific use case.
  • Avoid legal problems by providing you with suggestions that are enforceable.

Overall, AI Clause Assistant is a powerful tool that can help you to improve your contracts. It is easy to use, and it can save you time and effort. If you are looking for a way to improve your contracts, I recommend that you give AI Clause Assistant a try.

Here are some additional use cases for AI Clause Assistant:

  • Compliance: AI Clause Assistant can help you to ensure that your contracts are compliant with applicable laws and regulations.
  • Risk management: AI Clause Assistant can help you to identify and mitigate risks in your contracts.
  • Negotiation: AI Clause Assistant can help you to negotiate better contracts by providing you with insights into the strengths and weaknesses of your contracts.

 

Replace, pluralize, or singularize using LLM

Here are some steps on how to replace, pluralize, or singularize entire sections of text hassle-free:

  1. Identify the words or phrases that you want to replace or pluralize.
  2. Use a regular expression to match the words or phrases that you want to replace.
  3. Use a replacement string to replace the matched words or phrases.
  4. Use a function to pluralize or singularize the words or phrases.

Here is an example of how to replace a string of words in a contract:

This code will replace all occurrences of the word “dog” in the text with the word “dogs”.

To pluralize or singularize words, you can use the pluralize() and singularize() functions from the nltk library. For example, the following code will pluralize the word “dog”:

 

replacing, pluralizing, or singularizing entire sections of text hassle-free. This can be a useful feature for contracts, as it can help you to ensure that the text is grammatically correct and that the correct forms of words are used.

For example, let’s say you have a contract that says:

The parties agree that the contractor will be responsible for the delivery of 10 widgets.

If you want to change the number of widgets to 20, you can simply use the replace_string() function to replace the string “10” with “20”. However, this will not change the plural form of the word “widget”. To do that, you will need to use the pluralize() function. The following code will replace the string “10” with “20” and the word “widget” with the plural form “widgets”:

 

This code will print the following text:

The parties agree that the contractor will be responsible for the delivery of 20 widgets.

As you can see, the string “10” has been replaced with “20” and the word “widget” has been pluralized to “widgets”.

This is just one example of how you can use the replace_string() and pluralize() functions to replace, pluralize, or singularize entire sections of text. There are many other ways to use these functions, so you can experiment to find the best way to use them for your specific needs.

 

Adopt the best course of action with LLM

The legal landscape is becoming increasingly complex, with new legislation being passed all the time. This can make it difficult for lawyers to keep up with the latest changes, and it can also be difficult to identify the most relevant legal precedents.

Economic scenarios are also evolving quickly with new markets emerging and new technologies being developed. This can make it difficult for lawyers to advise their clients on the best course of action, and it can also be difficult to predict the potential risks and rewards of certain transactions.

Legal tech can help lawyers to address these challenges by providing them with tools that can help them to:

  • Stay up-to-date with the latest legislation. Legal tech can be used to track new legislation, to identify the most relevant legal precedents, and to stay informed of the latest legal developments.
  • Analyze complex economic scenarios. Legal tech can be used to analyze complex economic data, to identify potential risks and rewards, and to develop strategies for mitigating risk.
  • Automate repetitive tasks. Legal tech can be used to automate repetitive tasks, such as document drafting and review. This can free up lawyers’ time so that they can focus on more complex and strategic work.

As the legal landscape continues to become more complex, legal tech will play an increasingly important role in assisting lawyers. By providing lawyers with the tools, they need to stay up-to-date, analyze complex data, and automate repetitive tasks, legal tech can help lawyers to provide their clients with the best possible advice.

Furthermore, legal tech is being used to assist lawyers with the complexity of legislation and economic scenarios:

  • Document automation: Document automation tools can be used to generate contracts, wills, and other legal documents. This can save lawyers a significant amount of time and effort, and it can also help to ensure that the documents are accurate and compliant with the latest legislation.
  • E-discovery: E-discovery tools can be used to search and review large amounts of electronic data. This can be helpful in cases where there is a lot of evidence to be reviewed, or where the evidence is stored in electronic format.
  • Predictive analytics: Predictive analytics tools can be used to analyze data and identify potential risks and rewards. This can be helpful in cases where there is a lot of uncertainty, or where the potential consequences of a decision are significant

 

Upscale your legal career with Large Language Models and learn more about it in our upcoming LLM bootcamp:

 

Register today            

July 25, 2023

In today’s era of advanced artificial intelligence, language models like OpenAI’s GPT-3.5 have captured the world’s attention with their astonishing ability to generate human-like text. However, to harness the true potential of these models, it is crucial to master the art of prompt engineering.



How to curate a good prompt?

A well-crafted prompt holds the key to unlocking accurate, relevant, and insightful responses from language models. In this blog post, we will explore the top characteristics of a good prompt and discuss why everyone should learn prompt engineering. We will also delve into the question of whether prompt engineering might emerge as a dedicated role in the future.

Best practices for prompt engineering
Best practices for prompt engineering – Data Science Dojo

 

Prompt engineering refers to the process of designing and refining input prompts for AI language models to produce desired outputs. It involves carefully crafting the words, phrases, symbols, and formats used as input to guide the model in generating accurate and relevant responses. The goal of prompt engineering is to improve the performance and output quality of the language model.

 

Here’s a simple example to illustrate prompt engineering:

Imagine you are using a chatbot AI model to provide information about the weather. Instead of a generic prompt like “What’s the weather like?”, prompt engineering involves crafting a more specific and detailed prompt like “What is the current temperature in New York City?” or “Will it rain in London tomorrow?”

 

Read about —> Which AI chatbot is right for you in 2023

 

By providing a clear and specific prompt, you guide the AI model to generate a response that directly answers your question. The choice of words, context, and additional details in the prompt can influence the output of the AI model and ensure it produces accurate and relevant information.

Quick exercise –> Choose the most suitable prompt

 

Prompt engineering is crucial because it helps optimize the performance of AI models by tailoring the input prompts to the desired outcomes. It requires creativity, understanding of the language model, and attention to detail to strike the right balance between specificity and relevance in the prompts.

Different resources provide guidance on best practices and techniques for prompt engineering, considering factors like prompt formats, context, length, style, and desired output. Some platforms, such as OpenAI API, offer specific recommendations and examples for effective prompt engineering.

 

Why everyone should learn prompt engineering:

 

Prompt engineering - Marketoonist
Prompt Engineering | Credits: Marketoonist

 

1. Empowering communication: Effective communication is at the heart of every interaction. By mastering prompt engineering, individuals can enhance their ability to extract precise and informative responses from language models. Whether you are a student, professional, researcher, or simply someone seeking knowledge, prompt engineering equips you with a valuable tool to engage with AI systems more effectively.

2. Tailored and relevant information: A well-designed prompt allows you to guide the language model towards providing tailored and relevant information. By incorporating specific details and instructions, you can ensure that the generated responses align with your desired goals. Prompt engineering enables you to extract the exact information you seek, saving time and effort in sifting through irrelevant or inaccurate results.

3. Enhancing critical thinking: Crafting prompts demand careful consideration of context, clarity, and open-endedness. Engaging in prompt engineering exercises cultivates critical thinking skills by challenging individuals to think deeply about the subject matter, formulate precise questions, and explore different facets of a topic. It encourages creativity and fosters a deeper understanding of the underlying concepts.

4. Overcoming bias: Bias is a critical concern in AI systems. By learning prompt engineering, individuals can contribute to reducing bias in generated responses. Crafting neutral and unbiased prompts helps prevent the introduction of subjective or prejudiced language, resulting in more objective and balanced outcomes.

 

Top characteristics of a good prompt with examples

Prompting example
An example of a good prompt – Credits Gridfiti

 

 

A good prompt possesses several key characteristics that can enhance the effectiveness and quality of the responses generated. Here are the top characteristics of a good prompt:

1. Clarity:

A good prompt should be clear and concise, ensuring that the desired question or topic is easily understood. Ambiguous or vague prompts can lead to confusion and produce irrelevant or inaccurate responses.

Example:

Good Prompt: “Explain the various ways in which climate change affects the environment.”

Poor Prompt: “Climate change and the environment.”

2. Specificity:

Providing specific details or instructions in a prompt help focus the generated response. By specifying the context, parameters, or desired outcome, you can guide the language model to produce more relevant and tailored answers.

Example:

Good Prompt: “Provide three examples of how rising temperatures due to climate change impact marine ecosystems.”
Poor Prompt: “Talk about climate change.”

3. Context:

Including relevant background information or context in the prompt helps the language model understand the specific domain or subject matter. Contextual cues can improve the accuracy and depth of the generated response.

Example: 

Good Prompt: “In the context of agricultural practices, discuss how climate change affects crop yields.”

Poor Prompt: “Climate change effects

4. Open-endedness:

While specificity is important, an excessively narrow prompt may limit the creativity and breadth of the generated response. Allowing room for interpretation and open-ended exploration can lead to more interesting and diverse answers.

Example:

Good Prompt: “Describe the short-term and long-term consequences of climate change on global biodiversity.”

Poor Prompt: “List the effects of climate change.”

 

Large language model bootcamp

5. Conciseness:

Keeping the prompt concise helps ensure that the language model understands the essential elements and avoids unnecessary distractions. Lengthy or convoluted prompts might confuse the model and result in less coherent or relevant responses.

Example:
Good Prompt: “Summarize the key impacts of climate change on coastal communities.”

Poor Prompt: “Please explain the negative effects of climate change on the environment and people living near the coast.”

6. Correct grammar and syntax:

A well-structured prompt with proper grammar and syntax is easier for the language model to interpret accurately. It reduces ambiguity and improves the chances of generating coherent and well-formed responses.

Example:

Good Prompt: “Write a paragraph explaining the relationship between climate change and species extinction.”
Poor Prompt: “How species extinction climate change.”

7. Balanced complexity:

The complexity of the prompt should be appropriate for the intended task or the model’s capabilities. Extremely complex prompts may overwhelm the model, while overly simplistic prompts may not challenge it enough to produce insightful or valuable responses.

Example:

Good Prompt: “Discuss the interplay between climate change, extreme weather events, and natural disasters.”

Poor Prompt: “Climate change and weather.”

8. Diversity in phrasing:

When exploring a topic or generating multiple responses, varying the phrasing or wording of the prompt can yield diverse perspectives and insights. This prevents the model from repeating similar answers and encourages creative thinking.

Example:

Good Prompt: “How does climate change influence freshwater availability?” vs. “Explain the connection between climate change and water scarcity.”

Poor Prompt: “Climate change and water.

9. Avoiding leading or biased language:

To promote neutrality and unbiased responses, it’s important to avoid leading or biased language in the prompt. Using neutral and objective wording allows the language model to generate more impartial and balanced answers.

Example:

Good Prompt: “What are the potential environmental consequences of climate change?”

Poor Prompt: “How does climate change devastate the environment?”

10. Iterative refinement:

Crafting a good prompt often involves an iterative process. Reviewing and refining the prompt based on the generated responses can help identify areas of improvement, clarify instructions, or address any shortcomings in the initial prompt.

Example:

Prompt iteration involves an ongoing process of improvement based on previous responses and refining the prompts accordingly. Therefore, there is no specific example to provide, as it is a continuous effort.

By considering these characteristics, you can create prompts that elicit meaningful, accurate, and relevant responses from the language model.

 

Read about —-> How LLMs (Large Language Models) technology is making chatbots smarter in 2023?

 

Two different approaches of prompting

Prompting by instruction and prompting by example are two different approaches to guide AI language models in generating desired outputs. Here’s a detailed comparison of both approaches, including reasons and situations where each approach is suitable:

1. Prompting by instruction:

  • In this approach, the prompt includes explicit instructions or explicit questions that guide the AI model on how to generate the desired output.
  • It is useful when you need specific control over the generated response or when you want the model to follow a specific format or structure.
  • For example, if you want the AI model to summarize a piece of text, you can provide an explicit instruction like “Summarize the following article in three sentences.”
  • Prompting by instruction is suitable when you need a precise and specific response that adheres to a particular requirement or when you want to enforce a specific behavior in the model.
  • It provides clear guidance to the model and allows you to specify the desired outcome, length, format, style, and other specific requirements.

 

Learn to build LLM applications

 

Examples of prompting by instruction:

  1. In a classroom setting, a teacher gives explicit verbal instructions to students on how to approach a new task or situation, such as explaining the steps to solve a math problem.
  2. In Applied Behavior Analysis (ABA), a therapist provides a partial physical prompt by using their hands to guide a student’s behavior in the right direction when teaching a new skill.
  3. When using AI language models, an explicit instruction prompt can be given to guide the model’s behavior. For example, providing the instruction “Summarize the following article in three sentences” to prompt the model to generate a concise summary.

 

Tips for prompting by instruction:

    • Put the instructions at the beginning of the prompt and use clear markers like “A:” to separate instructions and context.
    • Be specific, descriptive, and detailed about the desired context, outcome, format, style, etc.
    • Articulate the desired output format through examples, providing clear guidelines for the model to follow.

 

2. Prompting by example:

  • In this approach, the prompt includes examples of the desired output or similar responses that guide the AI model to generate responses based on those examples.
  • It is useful when you want the model to learn from specific examples and mimic the desired behavior.
  • For example, if you want the AI model to answer questions about a specific topic, you can provide example questions and their corresponding answers.
  • Prompting by example is suitable when you want the model to generate responses similar to the provided examples or when you want to capture the style, tone, or specific patterns from the examples.
  • It allows the model to learn from the given examples and generalize its behavior based on them.

 

Examples of prompting by example:

  1. In a classroom, a teacher shows students a model essay as an example of how to structure and write their own essays, allowing them to learn from the demonstrated example.
  2. In AI language models, providing example questions and their corresponding answers can guide the model in generating responses similar to the provided examples. This helps the model learn the desired behavior and generalize it to new questions.
  3. In an online learning environment, an instructor provides instructional prompts in response to students’ discussion forum posts, guiding the discussion and encouraging deep understanding. These prompts serve as examples for the entire class to enhance the learning experience.

 

Tips for prompting by example:

    • Provide a variety of examples to capture different aspects of the desired behavior.
    • Include both positive and negative examples to guide the model on what to do and what not to do.
    • Gradually refine the examples based on the model’s responses, iteratively improving the desired behavior.

 

Which prompting approach is right for you?

Prompting by instruction provides explicit guidance and control over the model’s behavior, while prompting by example allows the model to learn from provided examples and mimic the desired behavior. The choice between the two approaches depends on the level of control and specificity required for the task at hand. It’s also possible to combine both approaches in a single prompt to leverage the benefits of each approach for different parts of the task or desired behavior.

To become proficient in prompt engineering, register now in our upcoming Large Language Models Bootcamp

July 12, 2023

Related Topics

Statistics
Resources
Programming
Machine Learning
LLM
Generative AI
Data Visualization
Data Security
Data Science
Data Engineering
Data Analytics
Computer Vision
Career
Artificial Intelligence