Data Science Blog

Interesting reads on all things data science.

LATEST ON DATA SCIENCE DOJO BLOG

Mastering mutable and immutable objects in Python
Shehryar Mallick
Mastering 10 essential SQL commands – A comprehensive guide to becoming an expert
Ruhma Khawaja

As the amount of data being generated and stored by companies and organizations continue to grow, the ability to effectively manage and manipulate this data using databases has become increasingly important for developers. Among the plethora of programming languages, we have SQL. Also known as Structured Query Language, SQL is a programming language widely used for managing data stored in relational databases.

SQL commands enable developers to perform a wide range of tasks such as creating tables, inserting, modifying data, retrieving data, searching databases, and much more. In this guide, we will highlight the top basic SQL commands that every developer should be familiar with. 

What is SQL?

For the unversed, the programming language SQL is primarily used to manage and manipulate data in relational databases. Relational databases are a type of database that organizes data into tables with rows and columns, like a spreadsheet. SQL is used to create, modify, and query these tables and the data stored in them. 

Top-SQL-commands

With SQL commands, developers can create tables and other database objects, insert and update data, delete data, and retrieve data from the database using SELECT statements. Developers can also use SQL to create, modify and manage indexes, which are used to improve the performance of database queries.

The language is used by many popular relational database management systems such as MySQL, PostgreSQL, and Microsoft SQL Server. While the syntax of SQL commands may vary slightly between different database management systems, the basic concepts are consistent across most implementations. 

Types of SQL Commands 

There are several types of SQL commands that are commonly used in relational databases, each with a specific purpose and function. Some of the most used SQL commands include: 

  1. Data Definition Language (DDL) commands: These commands are used to define the structure of a database, including tables, columns, and constraints. Examples of DDL commands include CREATE, ALTER, and DROP.
  2. Data Manipulation Language (DML) commands: These commands are used to manipulate data within a database. Examples of DML commands include SELECT, INSERT, UPDATE, and DELETE.
  3. Data Control Language (DCL) commands: These commands are used to control access to the database. Examples of DCL commands include GRANT and REVOKE.
  4. Transaction Control Language (TCL) commands: These commands are used to control transactions in the database. Examples of TCL commands include COMMIT and ROLLBACK.

Essential SQL commands

There are several essential SQL commands that you should know in order to work effectively with databases. Here are some of the most important SQL commands to learn:

CREATE 

The CREATE statement is used to create a new table, view, or another database object. The basic syntax of a CREATE TABLE statement is as follows: 

The statement starts with the keyword CREATE, followed by the type of object you want to create (in this case, TABLE), and the name of the new object you’re creating (in place of “table_name”). Then you specify the columns of the table and their data types.

For example, if you wanted to create a table called “customers” with columns for ID, first name, last name, and email address, the CREATE TABLE statement might look like this:

This statement would create a table called “customers” with columns for ID, first name, last name, and email address, with their respective data types specified. The ID column is also set as the primary key for the table.

SELECT  

Used on one of multiple tables, the SELECT statement Is used to retrieve data. The basic syntax of a SELECT statement is as follows: 

The SELECT statement starts with the keyword SELECT, followed by a list of the columns you want to retrieve. You then specify the table or tables from which you want to retrieve the data, using the FROM clause. You can also use the JOIN clause to combine data from two or more tables based on a related column.

You can use the WHERE clause to filter the results of a query based on one or more conditions. Programmers can also use GROUP BY to manage the results by one or multiple columns. The HAVING clause is used to filter the groups based on a condition while the ORDER BY clause can be used to sort the results by one or more columns.  

INSERT 

INSERT is used to add new data to a table in a database. The basic syntax of an INSERT statement is as follows: 

INSERT is used to add data to a specific table and begins with the keywords INSERT INTO, followed by the name of the table where the data will be inserted. You then specify the names of the columns in which you want to insert the data, enclosed in parentheses. You then specify the values you want to insert, enclosed in parentheses, and separated by commas. 

UPDATE 

Another common SQL command is the UPDATE statement. It is used to modify existing data in a table in a database. The basic syntax of an UPDATE statement is as follows: 

The UPDATE statement starts with the keyword UPDATE, followed by the name of the table you want to update. You then specify the new values for one or more columns using the SET clause and use the WHERE clause to specify which rows to update. 

DELETE 

Next up, we have another SQL command DELETE which is used to delete data from a table in a database. The basic syntax of a DELETE statement is as follows: 

In the above-mentioned code snippet, the statement begins with the keyword DELETE FROM. Then, we add the table name from which data must be deleted. You then use the WHERE clause to specify which rows to delete. 

ALTER  

The ALTER command in SQL is used to modify an existing table, database, or other database objects. It can be used to add, modify, or delete columns, constraints, or indexes from a table, or to change the name or other properties of a table, database, or another object. Here is an example of using the ALTER command to add a new column to a table called “tablename1”: 

In this example, the ALTER TABLE command is used to modify the “users” table. The ADD keyword is used to indicate that a new column is being added, and the column is called “email” and has a data type of VARCHAR with a maximum length of 50 characters. 

DROP  

The DROP command in SQL is used to delete a table, database, or other database objects. When a table, database, or other object is dropped, all the data and structure associated with it is permanently removed and cannot be recovered. So, it is important to be careful when using this command. Here is an example of using the DROP command to delete a table called ” tablename1″: 

In this example, the DROP TABLE command is used to delete the ” tablename1″ table from the database. Once the table is dropped, all the data and structure associated with it are permanently removed and cannot be recovered. It is also possible to use the DROP command to delete a database, an index, a view, a trigger, a constraint, and a sequence using a similar syntax as above by replacing the table with the corresponding keyword. 

TRUNCATE  

The SQL TRUNCATE command is used to delete all the data from a table. Simultaneously, this command also resets the auto-incrementing counter. Since it is a DDL operation, it is much faster than DELETE and does not generate undo logs, and does not fire any triggers associated with the table. Here is an example of using the TRUNCATE command to delete all data from a table called “customers”: 

In this example, the TRUNCATE TABLE command is used to delete all data from the “customers” table. Once the command is executed, the table will be empty, and the auto-incrementing counter will be reset. It is important to note that the TRUNCATE statement is not a substitute for the DELETE statement, TRUNCATE can only be used on tables and not on views or other database objects. 

INDEX  

The SQL INDEX command is used to create or drop indexes on one or more columns of a table. An index is a data structure that improves the speed of data retrieval operations on a table at the cost of slower data modification operations. Here is an example of using the CREATE INDEX command to create a new index on a table called ” tablename1″ on the column “first_name”: 

In this example, the CREATE INDEX command is used to create a new index called “idx_first_name” on the column “first_name” of the ” tablename1″ table. This index will improve the performance of queries that filter, or sort data based on the “first_name” column. 

JOIN  

Finally, we have a JOIN command that is primarily used to combine rows from two or more tables based on a related column between them.  It allows you to query data from multiple tables as if they were a single table. It is used for retrieving data that is spread across multiple tables, or for creating more complex reports and analyses.  

INNER JOIN – By implementing INNER JOIN, the database only returns/displays the rows that have matching values in both tables. For example, 

LEFT JOIN – LEFT JOIN command returns all rows from the left table. It also returns possible matching rows from the right table. If there is no match, NULL values will be returned for the right table’s columns. For example, 

RIGHT JOIN – In the RIGHT JOIN, the database returns all rows from the right table and possible matching rows from the left table. In case there is no match, NULL values will be returned for the left table’s columns. 

FULL OUTER JOIN – This type of JOIN returns all rows from both tables and any matching rows from both tables. If there is no match, NULL values will be returned for the non-matching columns. 

CROSS JOIN – This type of JOIN returns the Cartesian product of both tables, meaning it returns all combinations of rows from both tables. This can be useful for creating a matrix of data but can be slow and resource-intensive with large tables. 

Furthermore, it is also possible to use JOINs with subqueries and add ON or USING clauses to specify the columns that one wants to join.

Bottom line 

In conclusion, SQL is a powerful tool for managing and retrieving data in a relational database. The commands covered in this blog, SELECT, INSERT, UPDATE, and DELETE, are some of the most used in SQL commands and provide the foundation for performing a wide range of operations on a database. Understanding these commands is essential for anyone working with SQL commands and relational databases.

With practice and experience, you will become more proficient in using these commands and be able to create more complex queries to meet your specific needs. 

 

 

March 10, 2023
Memphis: A game changer in the world of traditional messaging systems
Insiyah Talib

Data Science Dojo is offering Memphis broker for FREE on Azure Marketplace preconfigured with Memphis, a platform that provides a P2P architecture, scalability, storage tiering, fault-tolerance, and security to provide real-time processing for modern applications suitable for large volumes of data. 

Introduction

It is a cumbersome and tiring process to install Docker first and then install Memphis. Then look after the integration and dependency issues. Are you already feeling tired? It is somehow confusing to resolve the installation errors. Not to worry as Data Science Dojo’s Memphis instance fixes all of that. But before we delve further into it, let us get to know some basics.  

What is Memphis? 

Memphis is an open-source modern replacement for traditional messaging systems. It is a cloud-based messaging system with a comprehensive set of tools that makes it easy and affordable to develop queue-based applications. It is reliable, can handle large volumes of data, and supports modern protocols. It requires minimal operational maintenance and allows for rapid development, resulting in significant cost savings and reduced development time for data-focused developers and engineers. 

Challenges for individuals

Traditional messaging brokers, such as Apache Kafka, RabbitMQ, and ActiveMQ, have been widely used to enable communication between applications and services. However, there are several challenges with these traditional messaging brokers: 

  1. Scalability: Traditional messaging brokers often have limitations on their scalability, particularly when it comes to handling large volumes of data. This can lead to performance issues and message loss. 
  2. Complexity: Setting up and managing a traditional messaging broker can be complex, particularly when it comes to configuring and tuning it for optimal performance.
  3. Single Point of Failure: Traditional messaging brokers can become a single point of failure in a distributed system. If the messaging broker fails, it can cause the entire system to go down. 
  4. Cost: Traditional messaging brokers can be expensive to deploy and maintain, particularly for large-scale systems. 
  5. Limited Protocol Support: Traditional messaging brokers often support only a limited set of protocols, which can make it challenging to integrate with other systems and technologies. 
  6. Limited Availability: Traditional messaging brokers can be limited in terms of the platforms and environments they support, which can make it challenging to use them in certain scenarios, such as cloud-based systems.

Overall, these challenges have led to the development of new messaging technologies, such as event streaming platforms, that aim to address these issues and provide a more flexible, scalable, and reliable solution for modern distributed systems.  

Memphis as a solution

Why Memphis? 

“It took me three minutes to build in Memphis what took me a week and a half in Kafka.” Memphis and traditional messaging brokers are both software systems that facilitate communication between different components or systems in a distributed architecture. However, there are some key differences between the two: 

  1. Architecture: It uses a peer-to-peer (P2P) architecture, while traditional messaging brokers use a client-server architecture. In a P2P architecture, each node in the network can act as both a client and a server, while in a client-server architecture, clients send messages to a central server which distributes them to the appropriate recipients. 
  2. Scalability: It is designed to be highly scalable and can handle large volumes of messages without introducing significant latency, while traditional messaging brokers may struggle to scale to handle high loads. This is because Memphis uses a distributed hash table (DHT) to route messages directly to their intended recipients, rather than relying on a centralized message broker. 
  3. Fault tolerance: It is highly fault-tolerant, with messages automatically routed around failed nodes, while traditional messaging brokers may experience downtime if the central broker fails. This is because it uses a distributed consensus algorithm to ensure that all nodes in the network agree on the state of the system, even in the presence of failures. 
  4. Security: Memphis provides end-to-end encryption by default, while traditional messaging brokers may require additional configuration to ensure secure communication between nodes. This is because it is designed to be used in decentralized applications, where trust between parties cannot be assumed. 

a
Overall, while both Memphis and traditional messaging brokers facilitate communication between different components or systems, they have different strengths and weaknesses and are suited to different use cases. It is ideal for highly scalable and fault-tolerant applications that require end-to-end encryption, while traditional messaging brokers may be more appropriate for simpler applications that do not require the same level of scalability and fault tolerance.
 

What struggles does Memphis solve? 

Handling too many data sources can become overwhelming, especially with complex schemas. Analyzing and transforming streamed data from each source is difficult, and it requires using multiple applications like Apache Kafka, Flink, and NiFi, which can delay real-time processing.

Additionally, there is a risk of message loss due to crashes, lack of retransmits, and poor monitoring. Debugging and troubleshooting can also be challenging. Deploying, managing, securing, updating, onboarding, and tuning message queue systems like Kafka, RabbitMQ, and NATS is a complicated and time-consuming task. Transforming batch processes into real-time can also pose significant challenges.

Integrations: 

Memphis Broker provides several integration options for connecting to diverse types of systems and applications. Here are some of the integrations available in Memphis Broker: 

Memphis - Data Science Dojo
                                                              Memphis – Data Science Dojo
  • JMS (Java Message Service) Integration 
  • .NET Integration 
  • REST API Integration 
  • MQTT Integration 
  • AMQP Integration 
  • Apache Camel, Apache ActiveMQ, and IBM WebSphere MQ. 

Key features: 

  • Fully optimized message broker in under 3 minutes 
  • Easy-to-use UI, CLI, and SDKs 
  • Dead-letter station (DLQ) 
  • Data-level observability 
  • Runs on your Docker or Kubernetes
  • Real-time event tracing 
  • SDKs: Python, Go, Node.js, Typescript, Nest.JS, Kotlin, .NET, Java 
  • Embedded schema management using Protobuf, JSON Schema, GraphQL, Avro 
  • Slack integration

What Data Science Dojo has for you: 

Azure Virtual Machine is preconfigured with plug-and-play functionality, so you do not have to worry about setting up the environment. Features include a zero-setup Memphis platform that offers you to: 

  • Build a dead-letter queue 
  • Create observability 
  • Build a scalable environment 
  • Create client wrappers 
  • Handle back pressure. Client or queue side 
  • Create a retry mechanism 
  • Configure monitoring and real-time alerts 

a
It stands out from other solutions because it can be set up in just three minutes, while others can take weeks. It’s great for creating modern queue-based apps with large amounts of streamed data and modern protocols, and it reduces costs and dev time for data engineers. Memphis has a simple UI, CLI, and SDKs, and offers features like automatic message retransmitting, storage tiering, and data-level observability.

Moreover, Memphis is a next-generation alternative to traditional message brokers. A simple, robust, and durable cloud-native message broker wrapped with an entire ecosystem that enables cost-effective, fast, and reliable development of modern queue-based use cases.

Wrapping up  

Memphis comes pre-configured with Ubuntu 20.04, so users do not have to set up anything featuring a plug n play environment. It on the cloud guarantees high availability as data can be distributed across multiple data centers and availability zones on the go. In this way, Azure increases the fault tolerance of data pipelines.

The power of Azure ensures maximum performance and high throughput for the server to deliver content at low latency and faster speeds. It is designed to provide a robust messaging system for modern applications, along with high scalability and fault tolerance.

The flexibility, performance, and scalability provided by Azure virtual machine to Memphis make it possible to offer a production-ready message broker in under 3 minutes. They provide durability and stability and efficient performing systems. 

When coupled with Microsoft Azure services and processing speed, it outperforms the traditional counterparts because data-intensive computations are not performed locally, but in the cloud. You can collaborate and share notebooks with various stakeholders within and outside the company while monitoring the status of each  

At Data Science Dojo, we deliver data science education, consulting, and technical services to increase the power of data. We are therefore adding a free Memphis instance dedicated specifically for highly scalable and fault-tolerant applications that require end-to-end encryption on Azure Market Place. Do not wait to install this offer by Data Science Dojo, your ideal companion in your journey to learn data science!

Try now - CTA

March 9, 2023
Discover the power of Python for data science: A 6-step roadmap for beginners
Ali Haider Shalwani

Python has become a popular programming language in the data science community due to its simplicity, flexibility, and wide range of libraries and tools. With its powerful data manipulation and analysis capabilities, Python has emerged as the language of choice for data scientists, machine learning engineers, and analysts.    

By learning Python, you can effectively clean and manipulate data, create visualizations, and build machine-learning models. It also has a strong community with a wealth of online resources and support, making it easier for beginners to learn and get started.   

This blog will navigate your path via a detailed roadmap along with a few useful resources that can help you get started with it.   

Python Roadmap for Data Science Beginners
              Python Roadmap for Data Science Beginners – Data Science Dojo

Step 1. Learn the basics of Python programming  

Before you start with data science, it’s essential to have a solid understanding of its programming concepts. Learn about basic syntax, data types, control structures, functions, and modules.  

Step 2. Familiarize yourself with essential data science libraries   

Once you have a good grasp of Python programming, start with essential data science libraries like NumPy, Pandas, and Matplotlib. These libraries will help you with data manipulation, data analysis, and visualization.   

This blog lists some of the top Python libraries for data science that can help you get started.  

Step 3. Learn statistics and mathematics  

To analyze and interpret data correctly, it’s crucial to have a fundamental understanding of statistics and mathematics.   This short video tutorial can help you to get started with probability.   

Additionally, we have listed some useful statistics and mathematics books that can guide your way, do check them out!  

Step 4. Dive into machine learning  

Start with the basics of machine learning and work your way up to advanced topics. Learn about supervised and unsupervised learning, classification, regression, clustering, and more.   

This detailed machine-learning roadmap can get you started with this step.   

Step 5. Work on projects  

Apply your knowledge by working on real-world data science projects. This will help you gain practical experience and also build your portfolio. Here are some Python project ideas you must try out!  

Step 6. Keep up with the latest trends and developments 

Data science is a rapidly evolving field, and it’s essential to stay up to date with the latest developments. Join data science communities, read blogs, attend conferences and workshops, and continue learning.  

Our weekly and monthly data science newsletters can help you stay updated with the top trends in the industry and useful data science & AI resources, you can subscribe here.   

Additional resources   

  1. Learn how to read and index time series data using Pandas package and how to build, predict or forecast an ARIMA time series model using Python’s statsmodels package with this free course. 
  2. Explore this list of top packages and learn how to use them with this short blog. 
  3. Check out our YouTube channel for Python & data science tutorials and crash courses, it can surely navigate your way.

By following these steps, you’ll have a solid foundation in Python programming and data science concepts, making it easier for you to pursue a career in data science or related fields.   

For an in-depth introduction do check out our Python for Data Science training, it can help you learn the programming language for data analysis, analytics, machine learning, and data engineering. 

Wrapping up

In conclusion, Python has become the go-to programming language in the data science community due to its simplicity, flexibility, and extensive range of libraries and tools.

To become a proficient data scientist, one must start by learning the basics of Python programming, familiarizing themselves with essential data science libraries, understanding statistics and mathematics, diving into machine learning, working on projects, and keeping up with the latest trends and developments.

With the numerous online resources and support available, learning Python and data science concepts has become easier for beginners. By following these steps and utilizing the additional resources, one can have a solid foundation in Python programming and data science concepts, making it easier to pursue a career in data science or related fields.

March 8, 2023
Empower your career – Discover the 10 essential skills to excel as a data scientist in 2023
Ruhma Khawaja

As data science evolves and grows, the demand for skilled data scientists is also rising. A data scientist’s role is to extract insights and knowledge from data and to use this information to inform decisions and drive business growth. To be successful in this field, certain skills are essential for any data scientist to possess.

By developing and honing these skills, data scientists will be better equipped to make an impact in any organization and stand out in a competitive job market. While a formal education is a good starting point, there are certain skills essential for any data scientist to possess to be successful in this field. These skills include non-technical skills and technical skills.  

10 essential skills to excel as a data scientist in 2023
    10 essential skills to excel as a data scientist in 2023 – Data Science Dojo

Technical skills 

Data science is a rapidly growing field, and as such, the skills required for a data scientist are constantly evolving. However, certain technical skills are considered essential for a data scientist to possess. These skills are often listed prominently in job descriptions and are highly sought after by employers.

These skills include programming languages such as Python and R, statistics and probability, machine learning, data visualization, and data modeling. Many of these skills can be developed through formal education and business training programs, and organizations are placing an increasing emphasis on them as they continue to expand their analytics and data teams. 

1. Prepare data for effective analysis 

One important data scientist skill is preparing data for effective analysis. This includes sourcing, gathering, arranging, processing, and modeling data, as well as being able to analyze large volumes of structured or unstructured data.

The goal of data preparation is to present data in the best forms for decision-making and problem-solving. This skill is crucial for any data scientist as it enables them to take raw data and make it usable for analysis and insights discovery. Data preparation is an essential step in the data science workflow, and data scientists should be familiar with various data preparation tools and best practices. 

2. Data visualization 

Data visualization is a powerful tool for data scientists to effectively communicate their findings and insights to both technical and non-technical audiences.

Having a strong understanding of the benefits and challenges of using data visualization, as well as basic knowledge of market solutions, allows data scientists to create clear and informative visualizations that effectively communicate their insights.

This skill includes an understanding of best practices and techniques for creating data visualizations, and the ability to share results through self-service dashboards or applications.

Self-service analytics platforms allow data scientists to surface the results of their data science processes and explore the data in a way that is easily understandable to non-technical stakeholders, which is crucial for driving data-driven decisions and actions.  

3. Programming 

Data scientists need to have a solid foundation in programming languages such as Python, R, and SQL. These languages are used for data cleaning, manipulation, and analysis, and for building and deploying machine learning models.

Python is widely used in the data science community, with libraries such as Pandas and NumPy for data manipulation, and Scikit-learn for machine learning. R is also popular among statisticians and data analysts, with libraries for data manipulation and machine learning.

SQL is a must-have for data scientists as it is a database language and allows them to extract data from databases and manipulate it easily. 

4. Ability to apply math and statistics appropriately 

Exploratory data analysis is a crucial step in the data science process, as it allows data scientists to identify important patterns and relationships in the data, and to gain insights that inform decisions and drive business growth.

To perform exploratory data analysis effectively, data scientists must have a strong understanding of math and statistics. Understanding the assumptions and algorithms underlying different analytic techniques and tools is also crucial for data scientists.

Without this understanding, data scientists risk misinterpreting the results of their analysis or applying techniques incorrectly. It is important to note that this skill is not only important for students and aspiring data scientists but also for experienced data scientists. 

5. Machine learning and artificial intelligence (AI) 

Machine learning and artificial intelligence (AI) are rapidly advancing technologies that are becoming increasingly important in data science. However, it is important to note that these technologies will not replace the role of data scientists in most organizations.

Instead, they will enhance the value that data scientists deliver by providing new and powerful tools to work better and faster. One of the key challenges in using AI and machine learning is knowing if you have the right data. Data scientists must be able to evaluate the quality of the data, identify potential biases and errors, and determine. 

Non-Technical Skills 

In addition to technical skills, soft skills are also essential for data scientists to possess to succeed in the field. These skills include critical thinking, effective communication, proactive problem-solving, and intellectual curiosity.

These skills may not require as much technical training or formal certification, but they are foundational to the rigorous application of data science to business problems. They help data scientists to analyze data objectively, communicate insights effectively, solve problems proactively, and stay curious and driven to find answers.

Even the most technically skilled data scientist needs to have these soft skills to make an impact in any organization and stand out in a competitive job market. 

6. Critical thinking

The ability to objectively analyze questions, hypotheses, and results, understand which resources are necessary to solve a problem, and consider different perspectives on a problem. 

7. Effective communication

The ability to explain data-driven insights in a way that is relevant to the business and highlights the value of acting. 

8. Proactive problem solving

The ability to identify opportunities, approach problems by identifying existing assumptions and resources, and use the most effective methods to find solutions. 

9. Intellectual curiosity

The drive to find answers, dive deeper than surface results and initial assumptions, think creatively, and constantly ask “why” to gain a deeper understanding of the data. 

10. Teamwork

The ability to work effectively with others, including cross-functional teams, to achieve common goals. This includes strong collaboration, communication, and negotiation skills. 

Bottom line 

All in all, data science is a growing field and data scientists play a crucial role in extracting insights from data. Technical skills like programming, statistics, and data visualization are essential, as are soft skills like critical thinking and effective communication. Developing these skills can help data scientists make a significant impact in any organization and stand out in a competitive job market.

March 7, 2023
Learn to deploy machine learning models to a web app or REST API with Saturn Cloud
Stephanie Kirmer

Data science model deployment can sound intimidating if you have never had a chance to try it in a safe space. Do you want to make a rest API or a full frontend app? What does it take to do either of these? It’s not as hard as you might think. 

In this series, we’ll go through how you can take machine learning models and deploy them to a web app or a rest API (using saturn cloud) so that others can interact. In this app, we’ll let the user make some feature selections and then the model will predict an outcome for them. But using this same idea, you could easily do other things, such as letting the user retrain the model, upload things like images, or conduct other interactions with your model. 

Just to be interesting, we’re going to do this same project with two frameworks, voila and flask, so you can see how they both work and decide what’s right for your needs. In a flask, we’ll create a rest API and a web app version.
A

Learn data science with Data Science Dojo and Saturn Cloud
               Learn data science with Data Science Dojo and Saturn Cloud – Data Science DojoA

a
Our toolkit
 

Other helpful links 

The project – Deploying machine learning models

The first steps of our process are exactly the same, whether we are going for voila or flask. We need to get some data and build a model! I will take the us department of education’s college scorecard data, and build a quick linear regression model that accepts a few inputs and predicts a student’s likely earnings 2 years after graduation. (you can get this data yourself at https://collegescorecard.ed.gov/data/) 

About measurements 

According to the data codebook: “the cohort of evaluated graduates for earnings metrics consists of those individuals who received federal financial aid, but excludes those who were subsequently enrolled in school during the measurement year, died before the end of the measurement year, received a higher-level credential than the credential level of the field of the study measured, or did not work during the measurement year.” 

Load data 

I already did some data cleaning and uploaded the features I wanted to a public bucket on s3, for easy access. This way, I can load it quickly when the app is run. 

Format for training 

Once we have the dataset, this is going to give us a handful of features and our outcome. We just need to split it between features and target with scikit-learn to be ready to model. (note that all of these functions will be run exactly as written in each of our apps.) 

 Our features are: 

  • Region: geographic location of college 
  • Locale: type of city or town the college is in 
  • Control: type of college (public/private/for-profit) 
  • Cipdesc_new: major field of study (cip code) 
  • Creddesc: credential (bachelor, master, etc) 
  • Adm_rate_all: admission rate 
  • Sat_avg_all: average sat score for admitted students (proxy for college prestige) 
  • Tuition: cost to attend the institution for one year 


Our target outcome is earn_mdn_hi_2yr: median earnings measured two years after completion of degree.
 

Train model 

We are going to use scikit-learn’s pipeline to make our feature engineering as easy and quick as possible. We’re going to return a trained model as well as the r-squared value for the test sample, so we have a quick and straightforward measure of the model’s performance on the test set that we can return along with the model object. 

Now we have a model, and we’re ready to put together the app! All these functions will be run when the app runs, because it’s so fast that it doesn’t make sense to save out a model object to be loaded. If your model doesn’t train this fast, save your model object and return it in your app when you need to predict. 

If you’re interested in learning some valuable tips for machine learning projects, read our blog on machine learning project tips.

Visualization 

In addition to building a model and creating predictions, we want our app to show a visual of the prediction against a relevant distribution. The same plot function can be used for both apps, because we are using plotly for the job. 

The function below accepts the type of degree and the major, to generate the distributions, as well as the prediction that the model has given. That way, the viewer can see how their prediction compares to others. Later, we’ll see how the different app frameworks use the plotly object. 

 

 This is the general visual we’ll be generating — but because it’s plotly, it’ll be interactive! 

Deploying machine learning models
Deploying machine learning models

You might be wondering whether your favorite visualization library could work here — the answer is, maybe! Every python viz library has idiosyncrasies and is not likely to be supported exactly the same for voila and flask. I chose plotly because it has interactivity and is fully functional in both frameworks, but you are welcome to try your own visualization tool and see how it goes.  

Wrapping up

In conclusion, deploying machine learning models to a web app or REST API can seem daunting, but it’s not as difficult as it may seem. By using frameworks like voila and Flask, along with libraries like scikit-learn, plotly, and pandas, you can easily create an app that allows users to interact with machine learning models. In this project, we used the US Department of Education’s college scorecard data to build a linear regression model that predicts a student’s likely earnings two years after graduation.

 

March 3, 2023
Top 5 data analytics conferences to attend in 2023 – Get ready to connect with the best in business
Ruhma Khawaja

Data analytics is the driving force behind innovation, and staying ahead of the curve has never been more critical. That is why we have scoured the landscape to bring you the crème de la crème of data analytics conferences in 2023.  

Data analytics conferences provide an essential platform for professionals and enthusiasts to stay current on the latest developments and trends in the field. By attending these conferences, attendees can gain new insights, and enhance their skills in data analytics.

These events bring together experts, practitioners, and thought leaders from various industries and backgrounds to share their experiences and best practices. Such conferences also provide an opportunity to network with peers and make new connections.  

Data analytics conferences to look forward to

In 2023, there will be several conferences dedicated to this field, where experts from around the world will come together to share their knowledge and insights. In this blog, we will dive into the top data analytics conferences of 2023 that data professionals and enthusiasts should add to their calendars.

Top Data Analytics Conferences in 2023
      Top Data Analytics Conferences in 2023 – Data Science Dojo

Strata Data Conference   

The Strata Data Conference is one of the largest and most comprehensive data conferences in the world. It is organized by O’Reilly Media and will take place in San Francisco, CA in 2023. It is a leading event in data analytics and technology, focusing on data and AI to drive business value and innovation. The conference brings together professionals from various industries, including finance, healthcare, retail, and technology, to discuss the latest trends, challenges, and solutions in the field of data analytics.   

This conference will bring together some of the leading data scientists, engineers, and executives from across the world to discuss the latest trends, technologies, and challenges in data analytics. The conference will cover a wide range of topics, including artificial intelligence, machine learning, big data, cloud computing, and more. 

Big Data & Analytics Innovation Summit  

The Big Data & Analytics Innovation Summit is a premier conference that brings together experts from various industries to discuss the latest trends, challenges, and solutions in data analytics. The conference will take place in London, England in 2023 and will feature keynotes, panel discussions, and hands-on workshops focused on topics such as machine learning, artificial intelligence, data management, and more.  

Attendees can attend keynote speeches, technical sessions, and interactive workshops, where they can learn about the latest technologies and techniques for collecting, processing, and analyzing big data to drive business outcomes and make informed decisions. The connection between the Big Data & Analytics Innovation Summit and data analytics lies in its focus on the importance of big data and the impact it has on businesses and industries. 

Predictive Analytics World   

Predictive Analytics World is among the leading data analytics conferences that focus specifically on the applications of predictive analytics. It will take place in Las Vegas, NV in 2023. Attendees will learn about the latest trends, technologies, and solutions in predictive analytics and gain valuable insights into this field’s future.  

At PAW, attendees can learn about the latest advances in predictive analytics, including techniques for data collection, data preprocessing, model selection, and model evaluation. For the unversed, Predictive analytics is a branch of data analytics that uses historical data, statistical algorithms, and machine learning techniques to make predictions about future events. 

AI World Conference & Expo   

The AI World Conference & Expo is a leading conference focused on artificial intelligence and its applications in various industries. The conference will take place in Boston, MA in 2023 and will feature keynote speeches, panel discussions, and hands-on workshops from leading AI experts, business leaders, and data scientists. Attendees will learn about the latest trends, technologies, and solutions in AI and gain valuable insights into this field’s future.  

The connection between the AI World Conference & Expo and data analytics lies in its focus on the importance of AI and data in driving business value and innovation. It highlights the significance of AI and data in enhancing business value and innovation. The event offers attendees an opportunity to learn from leading experts in the field, connect with other professionals, and stay informed about the most recent developments in AI and data analytics. 

Data Science Summit   

Last on the data analytics conference list we have the Data Science Summit. It is a premier conference focused on data science applications in various industries. The meeting will take place in San Diego, CA in 2023 and feature keynote speeches, panel discussions, and hands-on workshops from leading data scientists, business leaders, and industry experts. Attendees will learn about the latest trends, technologies, and solutions in data science and gain valuable insights into this field’s future.  

Special mention – Future of Data and AI

Hosted by Data Science Dojo, Future of Data and AI is an unparalleled opportunity to connect with top industry leaders and stay at the forefront of the latest advancements. Featuring 20+ industry experts, the two-day virtual conference offers a diverse range of expert-level knowledge and training opportunities.

Don’t worry if you missed out on the Future of Data and AI Conference! You can still catch all the amazing insights and knowledge from industry experts by watching the conference on YouTube.

Bottom line

In conclusion, the world of data analytics is constantly evolving, and it is crucial for professionals to stay updated on the latest trends and developments in the field. Attending conferences is one of the most effective ways to stay ahead of the game and enhance your knowledge and skills.  

The 2023 data analytics conferences listed in this blog are some of the most highly regarded events in the industry, bringing together experts and practitioners from all over the world. Whether you are a seasoned data analyst, a new entrant in the field, or simply looking to expand your network, these conferences offer a wealth of opportunities to learn, network, and grow.

So, start planning and get ready to attend one of these top conferences in 2023 to stay ahead of the curve. 

 

March 2, 2023
Maximizing product development success with SaaS – 7 essential tips for creating a viable product
Marta Dompson

Do you have an idea for a product that could potentially change the way businesses operate, but you don’t know where to start?  

With so many options out there, it can be daunting and overwhelming to try and figure out what steps to take. Product development is one of those areas in tech that has seen major advances over the past few years.  

Many organizations are now turning towards Software as a Service (SaaS) solutions to develop viable products quicker than ever before. In this blog post, we’ll explore the concept of SaaS product development and discuss how organizations can use these strategies to deliver successful products. 

Product Development and SaaS for viable product
                                         Product Development and SaaS for a viable product

Defining product development and software as a service 

Product development SaaS (software as a service) is an innovative form of web-based software that streamlines the software development process. It is designed to help businesses create quick and efficient applications for their customers using a SaaS platform.  

SaaS allows companies to focus on devices, application architecture, and user experience while they are creating their software products. By leveraging SaaS, businesses can save time with quick iterations, reduce complexity without sacrificing control over product workflow or management, and scale quickly and reliably with simple elasticity.  

Looking to take your data analytics and visualization to the next level? Check out this course and learn Power BI today!

SaaS also simplifies testing, deployment management, and patching for businesses running applications in multiple locations and on different operating systems. With SaaS development streams becoming more popular than ever before, businesses are increasingly turning toward this more secure model of software development to gain a competitive edge in today’s digital economy. 

How are these two concepts related?

The saas development process and customer experience optimization are closely related concepts. SaaS, or software-as-a-service, utilizes innovative software tools to create user-friendly and efficient applications that drive maximum customer engagement and satisfaction. Capable saas teams understand that continuing to optimize the development process is key to ensuring customers have the best experience possible with their software.  

This is why SaaS teams routinely measure customer feedback and adjust services based on results; this feedback loop acts as an integral part of SaaS development processes and customer experience optimization. Without it, companies would risk losing customers due to ineffective digital products – a fact that teams must never forget. 

The benefits of using both product development and software as a service 

For businesses, the combination of product development and software-as-a-service affords a wealth of benefits. With product development, companies can create customized products or services that meet their customers’ needs by utilizing emerging technologies and trends, while leveraging the scalability afforded by SaaS technology allows organizations to easily accommodate growing demands without getting bogged down in complicated processes. 

Additionally, taking advantage of these two approaches makes it simpler for businesses to manage and monitor customer interactions on different channels–both online and offline–quickly and efficiently. Ultimately, using product development in conjunction with SaaS allows organizations to quickly launch and grow new offerings for their customers while protecting their bottom line. 

How to create a viable product with these tools?

Creating a viable product with the right tools is essential for any business venture. By using the right resources, businesses can develop a product that will appeal to customers and be successful in the marketplace.  

The key to success lies in identifying the strengths of each tool you use and applying them to your project in ways that complement each other. Evaluating what works best for your audience and leveraging that knowledge to create an effective product is essential to establishing a thriving business.  

Effective use of these tools will not only help you create a unique, innovative product but also set your business up for long-term success in your chosen market. 

Tips for getting started with product development and software as a service 

Starting a product development or software service business can seem daunting, but with some planning and patience, success is possible. So we gathered 7 useful tips to help you get started: 

  1. Identify your niche: Decide on a specific market that you want to target and create a product that caters to their needs. 
  2. Research the market: Learn more about your industry, competitors, and customer trends to develop the best product for your niche. 
  3. Develop the product: Create a unique product which features an attractive design and offers value to your customers. 
  4. Launch the product: Test the product on a small scale with focus groups before launching it officially on the market. 
  5. Optimize for success: Monitor customer feedback, refine the user experience, and continue optimizing the product until it meets customer expectations. 
  6. Utilize the right tools: Leverage software and services that can help you automate processes, manage customer relationships, and analyze data. 
  7. Monitor performance: Track the performance of your product to identify areas for improvement and capitalize on growth opportunities.

    By following these tips, businesses can create a successful product development or software as a service business. As companies gain more experience and experiment with different strategies, they can continually refine their products to ensure customer satisfaction in the long run. With effective use of product development and software-as-a-service tools, businesses can create innovative digital products that meet their customers’ needs and expectations.

a
Final Words

In conclusion, product development and software as a service are both powerful tools that can help businesses of all sizes create better products. The key to success is understanding how they work together and the benefits they offer.   

By focusing on building solid products with a constant feedback loop, businesses can drive growth and stay ahead of the competition. Additionally, don’t forget the importance of getting started correctly – use available resources like case studies, tutorials, and live support forums to ensure success with your product development initiatives.   

Finally, keep an eye out for emerging trends in software SaaS so you know what new technologies could be useful for your product development projects. 

March 1, 2023
ChatGPT detection made easy – Top 5 free tools for identifying chatbots
Ruhma Khawaja

Meet ChatGPT, the AI tool that has revolutionized the way people work by enabling the creation of websites, apps, and even novels. However, with its increasing popularity, bad actors have also emerged, using it to cheat on exams and generate fake content.

To help you combat this issue, we’ve compiled a list of five free AI content detectors to verify the authenticity of the content you come across.

For the unversed – What is ChatGPT?

ChatGPT is an artificial intelligence language model developed by OpenAI. It is designed to generate human-like responses to natural language inputs, making it an ideal candidate for chatbot applications. ChatGPT is trained on vast amounts of text data and is capable of understanding and responding to a wide range of topics and questions.

While ChatGPT is a powerful tool, it’s important to be able to distinguish between real and fake chatbots, which is why tools for detecting ChatGPT and other fake chatbots have become increasingly important.

Read more about ChatGPT and how this AI tool is a game changer for businesses.

Overrated or underrated – Is ChatGPT reshaping the world?

ChatGPT, as an advanced language model, is reshaping the world in a number of ways. Here are some of the ways it is making an impact: 

  • Improving customer service – ChatGPT is being used by companies to improve their customer service by creating chatbots that can provide human-like responses to customer queries. This helps to reduce response times and improve the overall customer experience. 
  • Revolutionizing language translation – It is being used to improve language translation services by creating chatbots that can translate between languages in real-time, making communication between people who speak different languages easier. 
  • Advancing healthcare – Chat GPT is being used to create chatbots that can assist healthcare professionals by providing medical advice and answering patient queries. 
  • Transforming education –  The popular AI tool is being used to create chatbots that can assist students with their studies by providing answers to questions and offering personalized feedback.

5 free tools for detecting ChatGPT 

As artificial intelligence (AI) continues to advance, the use of chatbots and virtual assistants has become increasingly common. However, with the rise of AI, there has also been an increase in the use of fake chatbots, which can be used to deceive users for fraudulent purposes. As a result, it’s important to be able to detect whether you’re interacting with a real chatbot or a fake one. In this article, we’ll look at five free tools for detecting ChatGPT.

Tools for detecting ChatGPT
                 Top Tools for detecting ChatGPT – Data Science Dojo

1. Botometer:

Botometer is a free online tool developed by the University of Southern California’s Information Sciences Institute. It uses machine learning algorithms to detect whether a Twitter account is a bot or a human. It considers a range of factors, including the frequency and timing of tweets, the language used in tweets, and the presence of certain hashtags or URLs. Botometer can also detect the likelihood that the bot is using ChatGPT or another language model.

2. Bot Sentinel:

Bot Sentinel is another free online tool that can detect and analyze Twitter accounts that exhibit bot-like behavior. It uses a variety of factors to identify accounts that are likely to be bots, such as the frequency of tweets, the similarity of tweets to other bots, and the use of certain keywords or hashtags. Bot Sentinel can also identify accounts that are likely to be using ChatGPT or other language models.

3. Botcheck.me:

Botcheck.me is a free tool that analyzes Twitter accounts to determine the likelihood that they are bots. It considers a range of factors, such as the frequency and timing of tweets, the similarity of tweets to other bots, and the presence of certain hashtags or URLs. Botcheck.me can also detect whether a bot is using ChatGPT or other language models.

4. OpenAI’s GPT-3 Detector:

OpenAI has developed a tool that can detect whether a given text was generated by their GPT-3 language model or a human. While it’s not specifically designed to detect ChatGPT, it can be useful for identifying text generated by language models. The tool uses a deep neural network to analyze the language in the text and compare it to known patterns of human language and GPT-3-generated language.

5. Hugging Face Transformers:

Hugging Face offers a free, open-source library of natural language processing tools, including several models that can detect language-based chatbots. Their “pipeline” tool can be used to quickly detect whether a given text was generated by ChatGPT or other language models. Hugging Face Transformers is used by researchers, developers, and other professionals working with natural language processing and machine learning.

Why chatbot detectors are essential for professionals?

There are several groups of people who may want chatbot detectors, including: 

  • Business owners: Business owners who rely on chatbots for customer service may want detectors to ensure that their customers are interacting with a genuine chatbot and not a fake one. This can help to protect their customers from scams or fraud. 
  • Consumers: Consumers who interact with chatbots may want detectors to protect themselves from fraudulent chatbots or phishing scams. This can help them to avoid sharing personal information with a fake chatbot. 
  • Researchers: Researchers who are studying chatbots may want detectors to help them identify which chatbots are powered by ChatGPT or other language models. This can help them to understand how language models are being used in chatbot development and how they are being integrated into different applications. 
  • Developers: Chatbot developers who are working with ChatGPT may want detectors to ensure that their chatbots are providing accurate and reliable responses to users. This can help them to build better chatbots that can provide a more satisfying user experience.

Wrapping up 

Love it or hate it – ChatGPT is here to stay. However, with the increasing use of AI in chatbots and virtual assistants, it’s important to be able to detect whether you’re interacting with a real chatbot or a fake one. These five free tools can help you detect ChatGPT and other fake chatbots, helping you to stay safe online.

 

February 28, 2023
Master Facebook scraping with Python: Tips, tricks, and tools you must know
Manthan Koolwal

These days social platforms are quite popular. Websites like YouTube, Facebook, Instagram, etc. are used widely by billions of people.  These websites have a lot of data that can be used for sentiment analysis against any incident, election prediction, result prediction of any big event, etc. If you have this data, you can analyze the risk of any decision.

In this post, we are going to web-scrape public Facebook pages using Python and Selenium. We will also discuss the libraries and tools required for the process. So, if you’re interested in web scraping and data analysis, keep reading!

Facebook scraping with Python

Read more about web scraping with Python and BeautifulSoup and kickstart your analysis today.   

What do we need before writing the code? 

We will use Python 3.x for this tutorial, and I am assuming that you have already installed it on your machine. Other than that, we need to install two III-party libraries BeautifulSoup and Selenium. 

  • BeautifulSoup — This will help us parse raw HTML and extract the data we need. It is also known as BS4. 
  • Selenium — It will help us render JavaScript websites. 
  • We also need chromium to render websites using Selenium API. You can download it from here. 

 

Before installing these libraries, you have to create a folder where you will keep the python script. 

Now, create a python file inside this folder. You can use any name and then finally, install these libraries. 

What will we extract from a Facebook page? 

We are going to scrape addresses, phone numbers, and emails from our target page. 

First, we are going to extract the raw HTML using Selenium from the Facebook page and then we are going to use. find() and .find_all() methods of BS4 to parse this data out of the raw HTML. Chromium will be used in coordination with Selenium to load the website. 

Read about: How to scrape Twitter data without Twitter API using SNScrape. 

Let’s start scraping  

Let’s first write a small code to see if everything works fine for us. 

Let’s understand the above code step by step. 

  • We have imported all the libraries that we installed earlier. We have also imported the time library. It will be used for the driver to wait a little more before closing the chromium driver. 
  • Then we declared the PATH of our chromium driver. This is the path where you have kept the chromedriver. 
  • One empty list and an object to store data. 
  • target_url holds the page we are going to scrape. 
  • Then using .Chrome() method we are going to create an instance for website rendering. 
  • Then using .get() method of Selenium API we are going to open the target page. 
  • .sleep() method will pause the script for two seconds. 
  • Then using .page_source we collect all the raw HTML of the page. 
  • .close() method will close down the chrome instance. 

 

Once you run this code it will open a chrome instance, then it will open the target page and then after waiting for two seconds the chrome instance will be closed. For the first time, the chrome instance will open a little slow but after two or three times it will work faster. 

Once you inspect the page you will find that the intro section, contact detail section, and photo gallery section all have the same class names

with a div. But since for this tutorial, our main focus is on contact details therefore we will focus on the second div tag. 

Let’s find this element using the .find() method provided by the BS4 API. 

We have created a parse tree using BeautifulSoup and now we are going to extract crucial data from it. 

Using .find_all() method we are searching for all the div tags with class


and then we selected the second element from the list.
 

Now, here is a catch. Every element in this list has the same class and tag. So, we have to use regular expressions in order to find the information we need to extract. 

Let’s find all of these element tags and then later we will use a for loop to iterate over each of these elements to identify which element is what. 

Here is how we will identify the address, number, and email. 

  • The address can be identified if the text contains more than two commas. 
  • The number can be identified if the text contains more than two dash(-). 
  • Email can be identified if the text contains “@” in it. 

We ran a for loop on allDetails variable. Then we are one by one identifying which element is what. Then finally if they satisfy the if condition we are storing it in the object o. 

In the end, you can append the object o in the list l and print it. 

Once you run this code you will find this result. 

Complete Code 

We can make further changes to this code to scrape more information from the page. But for now, the code will look like this. 

Conclusion 

Today we scraped the Facebook page to collect emails for lead generation. Now, this is just an example of scraping a single page. If you have thousands of pages, then we can use the Pandas library to store all the data in a CSV file. I leave this task for you as homework. 

I hope you like this little tutorial and if you do then please do not forget to share it with your friends and on your social media. 

February 27, 2023
Happy Hour Diaries: Through employees’ lens at Data Science Dojo
Ruhma Khawaja

Who says you cannot have a happy hour while working from home? At Data Science Dojo, we have cracked the code on how to chat, laugh, and connect – virtually! No more worrying about awkward small talk with the boss’s boss – we are all on the same virtual playing field.  

Every now and then, our talented team at Data Science Dojo – from data scientists, content wizards, and marketing heroes to HR (Human Resources) specialists, product operations pros, and all those who run the show – put down their data-crunching hats and pick up their party hats. Here’s a sneak peek of our virtual happy hour shenanigans: 

The core purpose of Happy Hour 

At Data Science Dojo, we know that connecting with our colleagues is essential to fostering a strong and productive team. That’s why we look forward to our virtual happy hour as a time to let loose and have some fun while also building meaningful relationships with our teammates.  

The core purpose of Happy hour is to come together to laugh, chat, and bond over common interests outside of work. It’s the perfect opportunity to connect with new team members and learn what makes each of us unique.  

Happy Hour at Data Science Dojo
                     How Data Science Dojo’s Happy Hour boosts team morale and productivity?

Advantages of Happy Hour 

With remote work blurring the lines between work and home life, happy hour can help create a clear separation between the two, promoting a healthier work-life balance. DSD Happy Hours is a time to take a break from the monotony of repetitive work patterns and connect with colleagues in a more relaxed and informal setting. It allows coworkers to bond over common interests, share stories, and enjoy each other’s company. If you are wondering why you should join the DSD Happy Hour, here is a plethora of reasons: 

  1. Encourages social connections 
  2. Promotes work-life balance and boosts team morale 
  3. Fosters creativity and innovation 
  4. Improves communication and collaboration 
  5. Provides an opportunity for team building 
  6. Reduces stress and promotes well-being 
  7. This can lead to increased productivity and job satisfaction


Relax, Unwind, and Recharge: The positive impact of DSD Happy Hour 

Data Science Dojo tribe are staunch believers of the notion that teamwork makes the dream work! That is why we host happy hour events that provide an opportunity for our employees to relax, unwind, and recharge. But beyond the social benefits, our happy hour events also have a positive impact on collaboration and communication within our team.

When we take the time to connect with our colleagues outside of work, we gain a better understanding of their personalities, interests, and strengths. This deeper level of knowledge helps us to work more effectively together and accomplish our goals with greater ease.  

In addition to the social and professional benefits, our happy hour events also help to create a more positive and relaxed work environment. When our team members feel supported and connected, they are more likely to bring their best selves to work each day, which leads to better performance, increased creativity, and more innovative ideas. 

In short, our happy hour events are about much more than just spilling the beans on future endeavors or chatting with colleagues – they are an essential part of our company culture and a valuable tool for building a strong and successful team. 

Why DSD values employee collaboration  

Our employees are the heart and soul of DSD, and we are committed to helping them succeed. We value collective growth and collaboration helps us learn from each other, encourages personal growth, and makes it possible for us to reach business goals more quickly as well. At DSD, we prioritize our employees’ well-being by adopting a people-first approach. This initiative reflects our commitment to creating a comfortable work environment. 

January 2023 – DSD Happy Hour 

In January 2023, the team at DSD gathered for a virtual happy hour to catch up and share some laughter. We all shared our wittiest pieces of advice, such as “never trust a skinny cook, they may not be sampling their dishes” and “confuse them if you can’t convince them.” But the moment of truth came when someone revealed that the only advice they have been getting lately is “get married!” We all had a good laugh about that one. 

The conversation shifted to our aspirations, with one colleague dreaming of becoming a professional traveler and blogger, and another of a career in sustainable farming and dance club. And do not even get us started on the pet talk. Cat person, dog person, we all had a blast discussing our furry friends. And can we just talk about the hilarity of shoes being stolen outside mosques and temples? Overall, this virtual happy hour was a vibe, bringing our team together and bonding us despite working remotely. 

 Wrapping up 

In conclusion, virtual happy hours at DSD have proven to be a wonderful way to bring colleagues together, build team morale, and promote a sense of camaraderie in a remote work environment. So, let us raise a toast to virtual happy hours at DSD! Not only are they a great way to connect with your colleagues, but they are also a fun and enjoyable way to unwind after a busy workday. Cheers to building stronger bonds and creating a more positive work culture, one DSD happy hour at a time! 

February 24, 2023
Learn data science from the comfort of your own home
Ayesha Saleem

“Our online data science boot camp offers the same comprehensive curriculum as our in-person program. Learn from industry experts and earn a certificate from the comfort of your own home. Enroll now!”

Data Science is one of the most in-demand skills in today’s job market, and for good reason. With the rise of big data and the increasing importance of data-driven decision-making, companies are looking for professionals who can help them make sense of all the information they collect. 

But what if you don’t live near one of our Data Science Dojo training centers, or you don’t have the time to attend classes in-person? No worries! Our online data science boot camp offers the same comprehensive curriculum as our in-person program, so you can learn from industry experts and earn a certificate from the comfort of your own home. 

A glimpse into an online Data Science Bootcamp of Data Science Dojo

Our online boot camp is designed to give you a solid foundation in data science, including programming languages like Python and R, statistical analysis, machine learning, and more. You’ll learn from real-world examples and work on projects that will help you apply what you’ve learned to your own job. 

Data Science Bootcamp Review - Data Science Dojo
Data Science Bootcamp Review – Data Science Dojo

1. Learn at your own pace

One of the great things about our online boot camp is that you can learn at your own pace. We understand that everyone has different learning styles and schedules, so we’ve designed our program to be flexible and accommodating. You can attend live online classes, watch recorded lectures, and work through the material on your own schedule. 

2. Mentorship and support for participants

Another great thing about our online bootcamp is the support you’ll receive from our instructors and community of fellow students. Our instructors are industry experts who have years of experience in data science, and they’re always available to answer your questions and help you with your projects. You’ll also have access to a community of other students who are also learning data science, so you can share tips and resources, and help each other out. 

3. Interactive course material

Our Data Science Dojo bootcamp is designed to provide a comprehensive and engaging learning experience for students of all levels. One of the unique aspects of our program is the diverse set of exercises that we offer.

These exercises are designed to be challenging, yet accessible to everyone, regardless of your prior experience with data science. This means that whether you’re a complete beginner or an experienced professional, you’ll be able to learn and grow as a data scientist. 

4. Participate in data science competitions

To keep you motivated during the bootcamp, we also include a Kaggle competition. Kaggle is a platform for data science competitions, and participating in one is a wonderful way to apply what you’ve learned, compete against other students, and see how you stack up against the competition. 

5. Instructor-led training

Another unique aspect of our bootcamp is the instructor-led training. Our instructors are industry experts with years of experience in data science, and they’ll be leading the classes and providing guidance and support throughout the program. They’ll be available to answer questions, provide feedback, and help you with your projects. 

6. Ask your queries during dedicated office hours

In addition to the instructor-led training, we also provide dedicated office hours. These are scheduled times when you can drop in and ask our instructors or TA’s any questions you may have or get help with specific exercises. This is a great opportunity to get personalized attention and support, and to make sure you’re on track with the program. 

7. Build a strong alumni network

Our bootcamp also provides a strong alumni network. Once you complete the program, you’ll be part of our alumni network, which is a community of other graduates who are also working in data science. This is a great way to stay connected and to continue learning and growing as a data scientist. 

8. Master your skills with live code environments

One of the most important aspects of our bootcamp is the live code environments within a browser. This allows participants to practice coding anytime and anywhere, which is crucial for mastering this skill. This means you can learn and practice on the go, or at any time that is convenient for you. 

Once you finish the bootcamp, you’ll still have access to post-bootcamp tutorials and publicly available datasets. This will allow you to continue learning, practicing and building your portfolio. Alongside that, you’ll have access to blogs and learning material that will help you stay up to date with the latest industry trends and best practices. 

Start your data science learning journey today!

Overall, our Data Science Dojo bootcamp is designed to provide a comprehensive, flexible and engaging learning experience. With a diverse set of exercises, a Kaggle competition, instructor-led training, dedicated office hours, strong alumni network, live code environments within a browser, post-bootcamp tutorials, publicly available datasets and blogs and learning material, we are confident that our program will help you master data science and take the first step towards a successful career in this field. 

At the end of the program, you’ll receive a certificate of completion, which will demonstrate to potential employers that you have the skills and knowledge they’re looking for in a data scientist. 

So, if you’re looking to master data science, but you don’t have the time or opportunity to attend classes in-person, our online data science bootcamp is the perfect solution. Learn from industry experts and earn a certificate from the comfort of your own home. Enroll now and take the first step towards a successful career in data science 

register now

February 24, 2023
Creating a web app for Gradio application on Azure using Docker: A step-by-step guide
Syed Umair Hasan

In this step-by-step guide, learn how to deploy a web app for Gradio on Azure with Docker. This blog covers everything from Azure Container Registry to Azure Web Apps, with a step-by-step tutorial for beginners.

I was searching for ways to deploy a Gradio application on Azure, but there wasn’t much information to be found online. After some digging, I realized that I could use Docker to deploy custom Python web applications, which was perfect since I had neither the time nor the expertise to go through the “code” option on Azure. 

The process of deploying a web app begins by creating a Docker image, which contains all of the application’s code and its dependencies. This allows the application to be packaged and pushed to the Azure Container Registry, where it can be stored until needed. From there, it can be deployed to the Azure App Service, where it is run as a container and can be managed from the Azure Portal. In this portal, users can adjust the settings of their app, as well as grant access to roles and services when needed. 

Once everything is set and the necessary permissions have been granted, the web app should be able to properly run on Azure. Deploying a web app on Azure using Docker is an easy and efficient way to create and deploy applications, and can be a great solution for those who lack the necessary coding skills to create a web app from scratch!’

Comprehensive overview

Gradio application 

Gradio is a Python library that allows users to create interactive demos and share them with others. It provides a high-level abstraction through the Interface class, while the Blocks API is used for designing web applications.

Blocks provides features like multiple data flows and demos, control over where components appear on the page, handling complex data flows, and the ability to update properties and visibility of components based on user interaction. With Gradio, users can create a web application that allows their users to interact with their machine learning model, API, or data science workflow. 

The two primary files in a Gradio Application are:

  1. App.py: This file contains the source code for the application.
  2. Requirements.txt: This file lists the Python libraries required for the source code to function properly.

Docker 

Docker is an open-source platform for automating the deployment, scaling, and management of applications, as containers. It uses a container-based approach to package software, which enables applications to be isolated from each other, making it easier to deploy, run, and manage them in a variety of environments. 

A Docker container is a lightweight, standalone, and executable software package that includes everything needed to run a specific application, including the code, runtime, system tools, libraries, and settings. Containers are isolated from each other and from the host operating system, making them ideal for deploying microservices and applications that have multiple components or dependencies. 

Docker also provides a centralized way to manage containers and share images, making it easier to collaborate on application development, testing, and deployment. With its growing ecosystem and user-friendly tools, Docker has become a popular choice for developers, system administrators, and organizations of all sizes. 

Azure Container Registry 

Azure Container Registry (ACR) is a fully-managed, private Docker registry service provided by Microsoft as part of its Azure cloud platform. It allows you to store, manage, and deploy Docker containers in a secure and scalable way, making it an important tool for modern application development and deployment. 

With ACR, you can store your own custom images and use them in your applications, as well as manage and control access to them with role-based access control. Additionally, ACR integrates with other Azure services, such as Azure Kubernetes Service (AKS) and Azure DevOps, making it easy to deploy containers to production environments and manage the entire application lifecycle. 

ACR also provides features such as image signing and scanning, which helps ensure the security and compliance of your containers. You can also store multiple versions of images, allowing you to roll back to a previous version if necessary. 

Azure Web App 

Azure Web Apps is a fully-managed platform for building, deploying, and scaling web applications and services. It is part of the Azure App Service, which is a collection of integrated services for building, deploying, and scaling modern web and mobile applications. 

With Azure Web Apps, you can host web applications written in a variety of programming languages, such as .NET, Java, PHP, Node.js, and Python. The platform automatically manages the infrastructure, including server resources, security, and availability, so that you can focus on writing code and delivering value to your customers. 

Azure Web Apps supports a variety of deployment options, including direct Git deployment, continuous integration and deployment with Visual Studio Team Services or GitHub, and deployment from Docker containers. It also provides built-in features such as custom domains, SSL certificates, and automatic scaling, making it easy to deliver high-performing, secure, and scalable web applications. 

A step-by-step guide to deploying a Gradio application on Azure using Docker

This guide assumes a foundational understanding of Azure and the presence of Docker on your desktop. Refer to the Mac or Windows or Linux getting started instructions for Docker. 

Step 1: Create an Azure Container Registry resource 

Go to Azure Marketplace and search ‘container registry’ and hit ‘Create’. 

STEP 1: Create an Azure Container Registry resource
Create an Azure Container Registry resource

Under the “Basics” tab, complete the required information and leave the other settings as the default. Then, click “Review + Create.” 

Web App for Gradio Step 1A
Web App for Gradio Step 1A

 

Step 2: Create a Web App resource in Azure 

In Azure Marketplace, search for “Web App”, select the appropriate resource as depicted in the image, and then click “Create”. 

STEP 2: Create a Web App resource in Azure
Create a Web App resource in Azure

 

Under the “Basics” tab, complete the required information, choose the appropriate pricing plan and leave the other settings as the default. Then, click “Review + Create.”  

Web App for Gradio Step 2B
Web App for Gradio Step 2B

 

Web App for Gradio Step 2C
Web App for Gradio Step 2c

 

Upon completion of all deployments, the following three resources will be in your resource group. 

Web App for Gradio Step 2D
Web App for Gradio Step 2D

Step 3: Create a folder containing “App.py” file and its corresponding “requirements.txt” file 

To begin, we will utilize an emotion detector application, the model for which can be found at https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion. 

APP.PY 

REQUIREMENTS.TXT 

Step 4: Launch Visual Studio Code and open the folder

Step 4: Launch Visual Studio Code and open the folder. 
Step 4: Launch Visual Studio Code and open the folder.

Step 5: Launch Docker Desktop to start Docker. 

STEP 5: Launch Docker Desktop to start Docker
STEP 5: Launch Docker Desktop to start Docker.

Step 6: Create a Dockerfile 

A Dockerfile is a script that contains instructions to build a Docker image. This file automates the process of setting up an environment, installing dependencies, copying files, and defining how to run the application. With a Dockerfile, developers can easily package their application and its dependencies into a Docker image, which can then be run as a container on any host with Docker installed. This makes it easy to distribute and run the application consistently in different environments. The following contents should be utilized in the Dockerfile: 

DOCKERFILE 

STEP 6: Create a Dockerfile
STEP 6: Create a Dockerfile

Step 7: Build and run a local Docker image 

Run the following commands in the VS Code terminal. 

1. docker build -t demo-gradio-app 

  • The “docker build” command builds a Docker image from a Dockerfile. 
  • The “-t demo-gradio-app” option specifies the name and optionally a tag to the name of the image in the “name:tag” format. 
  • The final “.” specifies the build context, which is the current directory where the Dockerfile is located.

 

2. docker run -it -d –name my-app -p 7000:7000 demo-gradio-app 

  • The “docker run” command starts a new container based on a specified image. 
  • The “-it” option opens an interactive terminal in the container and keeps the standard input attached to the terminal. 
  • The “-d” option runs the container in the background as a daemon process. 
  • The “–name my-app” option assigns a name to the container for easier management. 
  • The “-p 7000:7000” option maps a port on the host to a port inside the container, in this case, mapping the host’s port 7000 to the container’s port 7000. 
  • The “demo-gradio-app” is the name of the image to be used for the container. 

This command will start a new container with the name “my-app” from the “demo-gradio-app” image in the background, with an interactive terminal attached, and port 7000 on the host mapped to port 7000 in the container. 

Web App for Gradio Step 7A
Web App for Gradio Step 7A

 

Web App for Gradio Step 7B
Web App for Gradio Step 7B

 

To view your local app, navigate to the Containers tab in Docker Desktop, and click on link under Port. 

Web App for Gradio Step 7C
Web App for Gradio Step 7C

Step 8: Tag & Push Image to Azure Container Registry 

First enable ‘Admin user’ from ‘Access Keys’ tab in Azure Container Registry. 

STEP 8: Tag & Push Image to Azure Container Registry
Tag & Push Image to Azure Container Registry

 

Login to your container registry using the following command, login server, username and password can be accessed from the above step. 

docker login gradioappdemos.azurecr.io

Web App for Gradio Step 8B
Web App for Gradio Step 8B

 

Tag the image for uploading to your registry using the following command. 

 

docker tag demo-gradio-app gradioappdemos.azurecr.io/demo-gradio-app 

  • The command “docker tag demo-gradio-app gradioappdemos.azurecr.io/demo-gradio-app” is used to tag a Docker image. 
  • “docker tag” is the command used to create a new tag for a Docker image. 
  • “demo-gradio-app” is the source image name that you want to tag. 
  • “gradioappdemos.azurecr.io/demo-gradio-app” is the new image name with a repository name and optionally a tag in the “repository:tag” format. 
  • This command will create a new tag “gradioappdemos.azurecr.io/demo-gradio-app” for the “demo-gradio-app” image. This new tag can be used to reference the image in future Docker commands. 

Push the image to your registry. 

docker push gradioappdemos.azurecr.io/demo-gradio-app 

  • “docker push” is the command used to upload a Docker image to a registry. 
  • “gradioappdemos.azurecr.io/demo-gradio-app” is the name of the image with the repository name and tag to be pushed. 
  • This command will push the Docker image “gradioappdemos.azurecr.io/demo-gradio-app” to the registry specified by the repository name. The registry is typically a place where Docker images are stored and distributed to others. 
Web App for Gradio Step 8C
Web App for Gradio Step 8C

 

In the Repository tab, you can observe the image that has been pushed. 

Web App for Gradio Step 8D
Web App for Gradio Step 8B

Step 9: Configure the Web App 

Under the ‘Deployment Center’ tab, fill in the registry settings then hit ‘Save’. 

STEP 9: Configure the Web App
Configure the Web App

 

In the Configuration tab, create a new application setting for the website port 7000, as specified in the app.py file and the hit ‘Save’. 

Web App for Gradio Step 9B
Web App for Gradio Step 9B
Web App for Gradio Step 9C
Web App for Gradio Step 9C

 

Web App for Gradio Step 9D
Web App for Gradio Step 9D

 

In the Configuration tab, create a new application setting for the website port 7000, as specified in the app.py file and the hit ‘Save’. 

Web App for Gradio Step 9E
Web App for Gradio Step 9E

 

After the image extraction is complete, you can the view the web app URL from the Overview page. 

 

Web App for Gradio Step 9F
Web App for Gradio Step 9F

 

Web App for Gradio Step 9G
Web App for Gradio Step 9G

Step 1O: Pushing Image to Docker Hub (Optional) 

Here are the steps to push a local Docker image to Docker Hub: 

  • Login to your Docker Hub account using the following command: 

docker login

  • Tag the local image using the following command, replacing [username] with your Docker Hub username and [image_name] with the desired image name: 

docker tag [image_name] [username]/[image_name]

  • Push the image to Docker Hub using the following command: 

docker push [username]/[image_name] 

  • Verify that the image is now available in your Docker Hub repository by visiting https://hub.docker.com/ and checking your repositories. 
Web App for Gradio Step 10A
Web App for Gradio Step 10A

 

Web App for Gradio Step 10B
Web App for Gradio Step 10B

Wrapping it up

In conclusion, deploying a web application using Docker on Azure is an easy and efficient way to create and deploy applications. This method is suitable for those who lack the necessary coding skills to create a web app from scratch. Docker is an open-source platform for automating the deployment, scaling, and management of applications, as containers.

Azure Container Registry is a fully-managed, private Docker registry service provided by Microsoft as part of its Azure cloud platform. Azure Web Apps is a fully-managed platform for building, deploying, and scaling web applications and services. By following the step-by-step guide provided in this article, users can deploy a Gradio application on Azure using Docker.

 

February 22, 2023
The truth behind data storytelling in action: Challenges, successes, and limitations to present data
Ayesha Saleem

Have you ever heard a story told with numbers? That’s the magic of data storytelling, and it’s taking the world by storm. If you’re ready to captivate your audience with compelling data narratives, you’ve come to the right place.

what is data storytelling
What is data storytelling – Detailed analysis by Data Science Dojo

 

Everyone loves data—it’s the reason your organization is able to make informed decisions on a regular basis. With new tools and technologies becoming available every day, it’s easy for businesses to access the data they need rather than search for it. Unfortunately, this also means that increasingly people are seeing the ins and outs of presenting data in an understandable way.

The rise in social media has allowed people to share their experiences with a product or service without having to look them up first. As a result, businesses are being forced to present data in a more refined way than ever before if they want to retain customers, generate leads, and retain brand loyalty. 

What is data storytelling? 

Data storytelling is the process of using data to communicate the story behind the numbers—and it’s a process that’s becoming more and more relevant as more people learn how to use data to make decisions. In the simplest terms, data storytelling is the process of using numerical data to tell a story. A good data story allows a business to dive deeper into the numbers and delve into the context that led to those numbers.

For example, let’s say you’re running a health and wellness clinic. A patient walks into your clinic, and you diagnose that they have low energy, are stressed out, and have an overall feeling of being unwell. Based on this, you recommend a course of treatment that addresses the symptoms of stress and low energy. This data story could then be used to inform the next steps that you recommend for the patient.   

Why is data storytelling important in three main fields: Finance, healthcare, and education? 

Finance – With online banking and payment systems becoming more common, the demand for data storytelling is greater than ever. Data can be used to improve a customer journey, improve the way your organization interacts with customers, and provide personalized services. Healthcare – With medical information becoming increasingly complex, data storytelling is more important than ever. In education – With more and more schools turning to data to provide personalized education, data storytelling can help drive outcomes for students. 

 

The importance of authenticity in data storytelling 

Authenticity is key when it comes to data storytelling. The best way to understand the importance of authenticity is to think about two different data stories. Imagine that in one, you present the data in a way that is true to the numbers, but the context is lost in translation. In the other example, you present the data in a more simplified way that reflects the situation, but it also leaves out key details. This is the key difference between data storytelling that is authentic and data storytelling that is not.

As you can imagine, the data store that is not authentic will be much less impactful than the first example. It may help someone, but it likely won’t have the positive impact that the first example did. The key to authenticity is to be true to the facts, but also to be honest with your readers. You want to tell a story that reflects the data, but you also want to tell a story that is true to the context of the data. 

 

Register for our conferenceFuture of Data and AI to learn from esteemed leaders and discover how to put data storytelling into action. Don’t miss out!

 

How to do data storytelling in action?

Start by gathering all the relevant data together. This could include figures from products, services, and your business as a whole; it could also include data about how your customers are currently using your product or service. Once you have your data together, you’ll want to begin to create a content outline.

This outline should be broken down into paragraphs and sentences that will help you tell your story more clearly. Invest time into creating an outline that is thorough but also easy for others to follow.

Next, you’ll want to begin to find visual representations of your data. This could be images, infographics, charts, or graphs. The visuals you choose should help you to tell your story more clearly.

Once you’ve finished your visual content, you’ll want to polish off your data stories. The last step in data storytelling is to write your stories and descriptions. This will give you an opportunity to add more detail to your visual content and polish off your message. 

 

The need for strategizing before you start 

While the process of data storytelling is fairly straightforward, the best way to begin is by strategizing. This is a key step because it will help you to create a content outline that is thorough, complete, and engaging. You’ll also want to strategize by thinking about who you are writing your stories for. This could be a specific section of your audience, or it could be a wider audience. Once you’ve identified your audience, you’ll want to think about what you want to achieve.

This will help you to create a content outline that is targeted and specific. Next, you’ll want to think about what your content outline will look like. This will help you to create a content outline that is detailed and engaging. You’ll also want to consider what your content outline will include. This will help you to ensure that your content outline is complete, and that it includes everything you want to include. 

Planning your content outline 

There are a few key things that you’ll want to include in your content outline. These include audience pain points, a detailed overview of your content, and your strategy. With your strategy, you’ll want to think about how you plan to present your data. This will help you to create a content outline that is focused, and it will also help you to make sure that you stay on track. 

Watch this video to know what your data tells you

 

Researching your audience and understanding their pain points 

With the planning complete, you’ll want to start to research your audience. This will help you to create a content outline that is more focused and will also help you to understand your audience’s pain points. With pain points in mind, you’ll want to create a content outline that is more detailed, engaging, and honest. You’ll also want to make sure that you’re including everything that you want to include in your content outline.   

Next, you’ll want to start to research your pain points. This will help you to create a content outline that is more detailed and engaging. 

Before you begin to create your content outline, you’ll want to start to think about your audience. This will help you to make connections and to start creating your content outline. With your audience in mind, you’ll want to think about how to present your information. This will help you to create a content outline that is more detailed, engaging, and focused. 

The final step in creating your content outline is to decide where you’re going to publish your data stories. If you’re going to publish your content on a website, you should think about the layout that you want to use. You’ll want to think about the amount of text and the number of images you want to include. 

 

The need for strategizing before you start 

Just as a good story always has a beginning, a middle, and an end, so does a good data story. The best way to start is by gathering all the relevant data together and creating a content outline. Once you’ve done this, you can begin to strategize and make your content more engaging, and you’ll want to make sure that you stay on track. 

 

Mastering your message: How to create a winning content outline

The first thing that you’ll want to think about when it comes to planning your content outline is your strategy. This will help you to make sure that you stay on track with your content outline. Next, you’ll want to think about your audience’s pain points. This will help you to make sure that you stay focused on the most important aspects of your content.  

 

Researching your audience and understanding their pain points 

The final thing that you’ll want to do before you begin to create your content outline is to research your audience. This will help you to make sure that you stay focused on the most important aspects of your content. With pain points in mind, you’ll want to make sure that you stay focused on the most important aspects of your content.  

Next, you’ll want to start to research your audience. This will help you to make sure that you stay focused on the most important aspects of your content. 

By approaching data storytelling in this way, you should be able to create engaging, detailed, and targeted content. 

 

The bottom line: What we’ve learned

In conclusion, data storytelling is a powerful tool that allows businesses to communicate complex data in a simple, engaging, and impactful way. It can help to inform and persuade customers, generate leads, and drive outcomes for students. Authenticity is a key component of effective data storytelling, and it’s important to be true to the facts while also being honest with your readers.

With careful planning and a thorough content outline, anyone can create powerful and effective data stories that engage and inspire their audience. As data continues to play an increasingly important role in decision-making across a wide range of industries, mastering the art of data storytelling is an essential skill for businesses and individuals alike.

February 21, 2023
Boost your MLOps efficiency with these 6 must-have tools and platforms
Ayesha Saleem

Are you struggling with managing MLOps tools? In this blog, we’ll show you how to boost your MLOps efficiency with 6 essential tools and platforms. These tools will help you streamline your machine learning workflow, reduce operational overheads, and improve team collaboration and communication.

Machine learning (ML) is the technology that automates tasks and provides insights. It allows data scientists to build models that can automate specific tasks. It comes in many forms, with a range of tools and platforms designed to make working with ML more efficient. It is used by businesses across industries for a wide range of applications, including fraud prevention, marketing automation, customer service, artificial intelligence (AI), chatbots, virtual assistants, and recommendations. Here are the best tools and platforms for MLOps professionals: 

Watch the complete MLOps crash course and add to your knowledge of developing machine learning models. 

Apache Spark 

Apache Spark is an in-memory distributed computing platform. It provides a large cluster of clusters on a single machine. Spark is a general-purpose distributed data processing engine that can handle large volumes of data for applications like data analysis, fraud detection, and machine learning. It features an ML package with machine learning-specific APIs that enable the easy creation of ML models, training, and deployment.  

With Spark, you can build various applications including recommendation engines, fraud detection, and decision support systems. Spark has become the go-to platform for an impressive range of industries and use cases. It excels with large volumes of data in real-time. It offers an affordable price point and is an easy-to-use platform. Spark is well suited to applications that involve large volumes of data, real-time computing, model optimization, and deployment.  

Read about Apache Zeppelin: Magnum Opus of MLOps in detail 

AWS SageMaker 

AWS SageMaker is an AI service that allows developers to build, train and manage AI models. SageMaker boosts machine learning model development with the power of AWS, including scalable computing, storage, networking, and pricing. It offers a complete end-to-end solution, including development tools, execution environments, training models, and deployment.  

AWS SageMaker provides managed services, including model management and lifecycle management using a centralized, debugged model. It also has a model marketplace for customers to choose from a range of models, including custom ones.  

AWS SageMaker also has a CLI for model creation and management. While the service is currently AWS-only, it supports both S3 and Glacier storage. AWS SageMaker is great for building quick models and is a good option for prototyping and testing. It is also useful for training models on smaller datasets. AWS SageMaker is useful for creating basic models, including regression, classification, and clustering. 

Best tools and platforms for MLOPs
Best tools and platforms for MLOPs – Data Science Dojo

Google Cloud Platform 

Google Cloud Platform is a comprehensive offering of cloud computing services. It offers a range of products, including Google Cloud Storage, Google Cloud Deployment Manager, Google Cloud Functions, and others.  

Google Cloud Platform is designed for building large-scale, mission-critical applications. It provides enterprise-class services and capabilities, such as on-demand infrastructure, network, and security. It also offers managed services, including managed storage and managed computing. Google Cloud Platform is a great option for businesses that need high-performance computing, such as data science, AI, machine learning, and financial services. 

Microsoft Azure Machine Learning 

Microsoft Azure Machine Learning is a set of tools for creating, managing, and analyzing models. It has prebuilt models that can be used for training and testing. Once a model is trained, it can be deployed as a web service. 

It also offers tools for creating models from scratch. Machine Learning is a set of techniques that allow computers to make predictions based on data without being programmed to do so. It uses algorithms to find patterns and make predictions based on the data, such as predicting what a user will click on.

Azure Machine Learning has a variety of prebuilt models, such as speech, language, image, and recommendation models. It also has tools for creating custom models. Azure Machine Learning is a great option for businesses that want to rapidly build and deploy predictive models. It is also well suited to model management, including deploying, updating, and managing models.  

Databricks 

Next up in the MLOps efficiency list. we have Databricks which is an open-source, next-generation data management platform. It focuses on two aspects of data management: ETL (extract-transform-load) and data lifecycle management. It has built-in support for machine learning.  

It allows users to design data pipelines, such as extracting data from various sources, transforming that data, and loading it into data storage engines. It also has ML algorithms built into the platform. It provides a variety of tools for data engineering, including model training and deployment. It has built-in support for different machine-learning algorithms, such as classification and regression. Databricks is a good option for business users that want to use machine learning quickly and easily. It is also well suited to data engineering tasks, such as vectorization and model training. 

TensorFlow Extended (TFX) 

TensorFlow is an open-source platform for implementing ML models. TensorFlow offers a wide range of ready-made models for various tasks, along with tools for designing and training models. It also has support for building custom models.  

TensorFlow offers a wide range of models for different tasks, such as speech and language processing, computer vision, and natural language understanding. It has support for a wide range of formats, including CSV, JSON, and HDFS.

TensorFlow also has a large library of machine learning models, such as neural networks, regression, probabilistic models, and collaborative filtering. TensorFlow is a powerful tool for data scientists. It also provides a wide range of ready-made models, making it an easy-to-use platform. TensorFlow is easy to use and comes with many models and algorithms. It has a large community, which makes it a reliable tool.

Key Takeaways 

Machine learning is one of the most important technologies in modern businesses. But finding the right tool and platform can be difficult. To help you with your decisions, here’s a list of the best tools and platforms for MLOps professionals. It is a technology that automates tasks and provides insights. It allows data scientists to build models that can automate specific tasks. ML comes in many forms, with a range of tools and platforms designed to make working with ML more efficient. 

 

February 20, 2023
12 must-have AI tools to revolutionize your daily routine
Ali Haider Shalwani

This blog outlines a collection of 12 AI tools that can assist with day-to-day activities and make tasks more efficient and streamlined.  

(more…)

February 18, 2023

DISCOVER MORE OF WHAT MATTERS TO YOU

Top
Statistics
Programming Language
Podcasts
Machine Learning
High-Tech
Events and Conferences
DSD Insights
Discussions
Development and Operations
Demos
Data Visualization
Data Security
Data Science
Data Engineering
Data Analytics
Computer Vision
Career
Books
Blogs
Artificial Intelligence