fbpx
Learn to build large language model applications: vector databases, langchain, fine tuning and prompt engineering. Learn more

LLM

Huda Mahmood - Author
Huda Mahmood
| April 22

Large language models (LLMs) are trained on massive textual data to generate creative and contextually relevant content. Since enterprises are utilizing LLMs to handle information effectively, they must understand the structure behind these powerful tools and the challenges associated with them.

One such component worthy of attention is the llm context window. It plays a crucial role in the development and evolution of LLM technology to enhance the way users interact with information.

In this blog, we will navigate the paradox around LLM context windows and explore possible solutions to overcome the challenges associated with large context windows. However, before we dig deeper into the topic, it’s essential to understand what LLM context windows are and their importance in the world of language models.

What are LLM context windows?

An LLM context window acts like a lens providing perspective to a large language model. The window keeps shifting to ensure a constant flow of information for an LLM as it engages with the user’s prompts and inputs. Thus, it becomes a short-term memory for LLMs to access when generating outputs.

 

Understanding the llm context window
A visual to explain context windows – Source: TechTarget

 

The functionality of a context window can be summarized through the following three aspects:

  • Focal word – Focuses on a particular word and the surrounding text, usually including a few nearby sentences in the data
  • Contextual information – Interprets the meaning and relationship between words to understand the context and provide relevant output for the users
  • Window size – Determines the amount of data and contextual information that is quickly accessible to the LLM when generating a response

Thus, context windows bae their function on the above aspects to assist LLMs in creating relevant and accurate outputs. These aspects also lay down a basis for the context window paradox that we aim to explore here.

 

Large language model bootcamp

 

What is the context window paradox?

It is a dilemma that revolves around the size of context windows. While it is only logical to expect large context windows to be beneficial, there are two sides to this argument.

Side One

It elaborates on the benefits of large context windows. With a wider lens, LLMs get access to more textual data and information. It enables an LLM to study more data, forming better connections between words and generating improved contextual information.

Thus, the LLM generates enhanced outputs with better understanding and a coherent flow of information. It also assists language models to handle complex tasks more efficiently.

Side Two

While larger windows give access to more contextual information, it also increases the amount of data for LLMs to process. It makes it challenging to identify useful knowledge from irrelevant details in large amounts of data, overwhelming LLMs at the cost of degraded performance.

Thus, it makes the size of LLM context windows a paradoxical matter where users have to look for the right trade-off between improved contextual information and the high performance of LLMs. It leads one to decide how much information is a good amount for an efficient LLM.

Before we elaborate further on the paradox, let’s understand the role and importance of context windows in LLMs.

Why do context windows matter in LLMs?

LLM context windows are important in ensuring the efficient working of LLMs. Their multifaceted role is described below.

Understanding language nuances

The focused perspective of context windows provides surrounding information in data, enabling LLMs to better understand the nuances of language. The model becomes trained to grasp the meaning and intent behind words. It empowers an LLM to perform the following tasks:

Machine translation

An LLM uses a context window to identify the nuances of language and contextual information to create the most appropriate translation. It caters to the understanding of context within an entire sentence or paragraph to ensure efficient machine translation.

Question answering

Understanding contextual information is crucial when answering questions. With relevant information on the situation and setting, it is easier to generate an informative answer. Using a context window, LLMs can identify the relevant parts of the conversation and avoid irrelevant tangents.

Coherent text generation

LLMs use context windows to generate text that aligns with the preceding information. By analyzing the context, the model can maintain coherence, tone, and overall theme in its response. This is important for tasks like:

Chatbots

Conversational engagement relies on a high level of coherence. It is particularly used in chatbots where the model remembers past interactions within a conversation. With the use of context windows, a chatbot can create a more natural and engaging conversation.

Here’s a step-by-step guide to building LLM chatbots.

 

 

Creative textual responses

LLMs can create creative content like poems, essays, and other texts. A context window allows an LLM to understand the desired style and theme from the given dataset to create creative responses that are more relevant and accurate.

Contextual learning

Context is a crucial element for LLMs which becomes more accessible with context windows. Analyzing the relevant data with a focus on words and text of interest allows an LLM to learn and adapt their responses. It becomes useful for uses like:

Virtual assistants

Virtual assistants are designed to help users in real-time. Context window enables the assistant to remember past requests and preferences to provide more personalized and helpful service.

Open-ended dialogues

In ongoing conversations, the context window allows the LLM to track the flow of the dialogue and tailor its responses accordingly.

Hence, context windows act as a lens through which LLMs view and interpret information. The size and effectiveness of this perspective significantly impact the LLM’s ability to understand and respond to language in a meaningful way. This brings us back to the size of a context window and the associated paradox.

The context window paradox: Is bigger, not better?

While a bigger context window ensures LLM’s access to more information and better details for contextual relevance, it comes at a cost. Let’s take a look at some of the drawbacks for LLMs that come with increasing the context window size.

Information overload

Too much information can overwhelm a language model just like humans. Too much text leads to an information overload that includes irrelevant information that can become a distraction for an LLM.

It makes it difficult for LLMs to focus on key knowledge aspects within the context, making it difficult to generate effective responses to queries. Moreover, a large textual dataset also requires more computational resources, resulting in more expense and slower LLM performance.

Getting lost in data

Even with a larger window for data access, an LLM can process limited information effectively. In a wider span of data, an LLM can focus on the edges. It results in LLMs prioritizing the data at the start and end of a window, missing out on important information in the middle.

Moreover, mismanaged truncation to fit a large window size can result in the loss of essential information. As a result, it can compromise the quality of the results produced by the LLM.

Poor information management

A wider LLM context window means a larger context that can lead to poor handling and management of information or data. With too much noise in the data, it becomes difficult for an LLM to differentiate between important and unimportant information.

It can create redundancy or contradictions in produced results, harming the credibility and efficiency of a large language model. Moreover, it creates a possibility for bias amplification, leading to misleading outputs.

Long-range dependencies

With a focus on concepts spread far apart in large context windows, it can become challenging for an LLM to understand relationships between words and concepts. It limits the LLM’s ability for tasks requiring historical analysis or cause-and-effect relationships.

Thus, large context windows offer advantages but with some limitations. The best approach is to find the right balance between context size, efficiency, and the specific task at hand is crucial for optimal LLM performance.

 

How generative AI and LLMs work

 

Techniques to address context window paradox

Let’s look at some techniques that can assist you in optimizing the use of large context windows. Each one explores ways to find the optimal balance between context size and LLM performance.

Prioritization and attention mechanisms

Attention mechanism techniques can be used to focus on crucial and most relevant information within a context window. Hence, an LLM does not have to deal with the entire flow of information and can only focus on the highlighted parts within the window, enhancing its overall performance.

Strategic truncation

Since all the information within a context window is not important or equally relevant, truncation can be used to strategically remove unrelated details. The core elements of the text needed for the task are preserved while the unnecessary information is removed, avoiding information overload on the LLM.

 

 

Retrieval augmented generation (RAG)

This technique integrates an LLM with a retrieval system containing a vast external knowledge base to find information specifically relevant to the current prompt and context window. This allows the LLM to access a wider range of information without being overwhelmed by a massive internal window.

Prompt engineering

It focuses on crafting clear instructions for the LLM to efficiently utilize the context window. Clear and focused prompts can guide the LLM toward relevant information within the context, enhancing the LLM’s efficiency in utilizing context windows.

 

Here’s a 10-step guide to becoming a prompt engineer

 

Optimizing training data

It is a useful practice to organize training data, creating well-defined sections, summaries, and clear topic shifts, helping the LLM learn to navigate larger contexts more effectively. The structured information makes it easier for an LLM to process data within the context window.

These techniques can help us address the context window paradox and leverage the benefits of larger context windows while mitigating their drawbacks.

The Future of Context Windows in LLMs

We have looked at the varying aspects of LLM context windows and the paradox involving their size. With the right approach, technique, and balance, it is possible to choose the optimal context window size for an LLM. Moreover, it also highlights the need to focus on the potential of context windows beyond the paradox around their size.

The future is expected to transition from cramming more information into a context window to ward smarter context utilization. Moreover, advancements in attention mechanisms and integration with external knowledge bases will also play a role, allowing LLMs to pinpoint truly relevant information regardless of window size.

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

Ultimately, the goal is for LLMs to become context masters, understanding not just the “what” but also the “why” within the information they process. This will pave the way for LLMs to tackle even more intricate tasks and generate responses that are both informative and human-like.

Huda Mahmood - Author
Huda Mahmood
| April 18

Language is the basis for human interaction and communication. Speaking and listening are the direct by-products of human reliance on language. While humans can use language to understand each other, in today’s digital world, they must also interact with machines.

The answer lies in large language models (LLMs) – machine-learning models that empower machines to learn, understand, and interact using human language. Hence, they open a gateway to enhanced and high-quality human-computer interaction.

Let’s understand large language models further.

What are large language models?

Imagine a computer program that’s a whiz with words, capable of understanding and using language in fascinating ways. That’s essentially what an LLM is! Large language models are powerful AI-powered language tools trained on massive amounts of text data, like books, articles, and even code.

By analyzing this data, LLMs become experts at recognizing patterns and relationships between words. This allows them to perform a variety of impressive tasks, like:

Creative text generation

LLMs can generate different creative text formats, crafting poems, scripts, musical pieces, emails, and even letters in various styles. From a catchy social media post to a unique story idea, these language models can pull you out of any writer’s block. Some LLMs, like LaMDA by Google AI, can help you brainstorm ideas and even write different creative text formats based on your initial input.

Speak many languages

Since language is the area of expertise for LLMs, the models are trained to work with multiple languages. It enables them to understand and translate languages with impressive accuracy. For instance, Microsoft’s Translator powered by LLMs can help you communicate and access information from all corners of the globe.

 

Large language model bootcamp

 

Information powerhouse

With extensive training dataset and diversity of information, LLMs become information powerhouses with quick answers to all your queries. They are highly advanced search engines that can provide accurate and contextually relevant information to your prompts.

Like Megatron-Turing NLG from NVIDIA can analyze vast amounts of information and summarize it in a clear and concise manner. This can help you gain insights and complete tasks more efficiently.

As you kickstart your journey of understanding LLMs, don’t forget to spend some time with this playlist!

 

 

LLMs are constantly evolving, with researchers developing new techniques to unlock their full potential. These powerful language tools hold immense promise for various applications, from revolutionizing communication and content creation to transforming the way we access and understand information.

As LLMs continue to learn and grow, they’re poised to be a game-changer in the world of language and artificial intelligence.

While this is a basic concept of LLMs, they are a very vast concept in the world of generative AI and beyond. This blog aims to provide in-depth guidance in your journey to understand large language models. Let’s take a look at all you need to know about LLMs.

A roadmap to building LLM applications

Before we dig deeper into the structural basis and architecture of large language models, let’s look at their practical applications and understand the basic roadmap to building them.

 

Explore the outline of a roadmap that will guide you in learning about building and deploying LLMs. Read more about it here.

 

LLM applications are important for every enterprise that aims to thrive in today’s digital world. From reshaping software development to transforming the finance industry, large language models have redefined human-computer interaction in all industrial fields.

However, the application of LLM is not just limited to technical and financial aspects of business. The assistance of large language models has upscaled the legal career of lawyers with ease of documentation and contract management.

 

Here’s your guide to creating personalized Q&A chatbots

 

While the industrial impact of LLMs is paramount, the most prominent impact of large language models across all fields has been through chatbots. Every profession and business has reaped the benefits of enhanced customer engagement, operational efficiency, and much more through LLM chatbots.

Here’s a guide to the building techniques and real-life applications of chatbots using large language models: Guide to LLM chatbots

LLMs have improved the traditional chatbot design, offering enhanced conversational ability and better personalization. With the advent of OpenAI’s GPT-4, Google AI’s Gemini, and Meta AI’s LLaMA, LLMs have transformed chatbots to become smarter and a more useful tool for modern-day businesses.

Hence, LLMs have emerged as a useful tool for enterprises, offering advanced data processing and communication for businesses with their machine-learning models. If you are looking for a suitable large language model for your organization, the first step is to explore the available options in the market.

Navigating through large language models in the market

The modern market is swamped with different LLMs for you to choose from. With continuous advancements and model updates, the landscape is constantly evolving to introduce improved choices for businesses. Hence, you must carefully explore the different LLMs in the market before deploying an application for your business.

 

Learn to build and deploy custom LLM applications for your business

 

Below is a list of LLMs you can find in the market today.

ChatGPT

The list must start with the very famous ChatGPT. Developed by OpenAI, it is a general-purpose LLM that is trained on a large dataset, consisting of text and code. Its instant popularity sparked a widespread interest in LLMs and their potential applications.

While people explored cheat sheets to master ChatGPT usage, it also initiated a debate on the ethical impacts of such a tool in different fields, particularly education. However, despite the concerns, ChatGPT set new records by reaching 100 million monthly active users in just two months.

This tool also offers plugins as supplementary features that enhance the functionality of ChatGPT. We have created a list of the best ChatGPT plugins that are well-suited for data scientists. Explore these to get an idea of the computational capabilities that ChatGPT can offer.

Here’s a guide to the best practices you can follow when using ChatGPT.

 

 

Mistral 7b

It is a 7.3 billion parameter model developed by Mistral AI. It incorporates a hybrid approach of transformers and recurrent neural networks (RNNs), offering long-term memory and context awareness for tasks. Mistral 7b is a testament to the power of innovation in the LLM domain.

Here’s an article that explains the architecture and performance of Mistral 7b in detail. You can explore its practical applications to get a better understanding of this large language model.

Phi-2

Designed by Microsoft, Phi-2 has a transformer-based architecture that is trained on 1.4 trillion tokens. It excels in language understanding and reasoning, making it suitable for research and development. With only 2.7 billion parameters, it is a relatively smaller LLM, making it useful for research and development.

You can read more about the different aspects of Phi-2 here.

Llama 2

It is an open-source large language model that varies in scale, ranging from 7 billion to a staggering 70 billion parameters. Meta developed this LLM by training it on a vast dataset, making it suitable for developers, researchers, and anyone interested in their potential.

Llama 2 is adaptable for tasks like question answering, text summarization, machine translation, and code generation. Its capabilities and various model sizes open up potential for diverse applications, focusing on efficient content generation and automating tasks.

 

Read about the 6 different methods to access Llama 2

 

Now that you have an understanding of the different LLM applications and their power in the field of content generation and human-computer communication, let’s explore the architectural basis of LLMs.

Emerging frameworks for large language model applications

LLMs have revolutionized the world of natural language processing (NLP), empowering the ability of machines to understand and generate human-quality text. The wide range of applications of these large language models are made accessible through different user-friendly frameworks.

 

orchestration framework for large language models
An outlook of the LLM orchestration framework

 

Let’s look at some prominent frameworks for LLM applications.

LangChain for LLM application development

LangChain is a useful framework that simplifies the LLM application development process. It offers pre-built components and a user-friendly interface, enabling developers to focus on the core functionalities of their applications.

LangChain breaks down LLM interactions into manageable building blocks called components and chains. Thus, allowing you to create applications without needing to be an LLM expert. Its major benefits include a simplified development process, flexibility in data integration, and the ability to combine different components for a powerful LLM.

With features like chains, libraries, and templates, the development of large language models is accelerated and code maintainability is promoted. Thus, making it a valuable tool to build innovative LLM applications. Here’s a comprehensive guide exploring the power of LangChain.

You can also explore the dynamics of the working of agents in LangChain.

LlamaIndex for LLM application development

It is a special framework designed to build knowledge-aware LLM applications. It emphasizes on integrating user-provided data with LLMs, leveraging specific knowledge bases to generate more informed responses. Thus, LlamaIndex produces results that are more informed and tailored to a particular domain or task.

With its focus on data indexing, it enhances the LLM’s ability to search and retrieve information from large datasets. With its security and caching features, LlamaIndex is designed to uncover deeper insights in text exploration. It also focuses on ensuring efficiency and data protection for developers working with large language models.

Moreover, its advanced query interfaces make it a unique orchestration framework for LLM application development. Hence, it is a valuable tool for researchers, data analysts, and anyone who wants to unlock the knowledge hidden within vast amounts of textual data using LLMs.

Hence, LangChain and LlamaIndex are two useful orchestration frameworks to assist you in the LLM application development process. Here’s a guide explaining the role of these frameworks in simplifying the LLM apps.

Here’s a webinar introducing you to the architectures for LLM applications, including LangChain and LlamaIndex:

 

 

Understand the key differences between LangChain and LlamaIndex

 

The architecture of large language model applications

While we have explored the realm of LLM applications and frameworks that support their development, it’s time to take our understanding of large language models a step ahead.

 

architecture for large language models
An outlook of the LLM architecture

 

Let’s dig deeper into the key aspects and concepts that contribute to the development of an effective LLM application.

Transformers and attention mechanisms

The concept of transformers in neural networks has roots stretching back to the early 1990s with Jürgen Schmidhuber’s “fast weight controller” model. However, researchers have constantly worked towards the advancement of the concept, leading to the rise of transformers as the dominant force in natural language processing

It has paved the way for their continued development and remarkable impact on the field. Transformer models have revolutionized NLP with their ability to grasp long-range connections between words because understanding the relationship between words across the entire sentence is crucial in such applications.

 

Read along to understand different transformer architectures and their uses

 

While you understand the role of transformer models in the development of NLP applications, here’s a guide to decoding the transformers further by exploring their underlying functionality using an attention mechanism. It empowers models to produce faster and more efficient results for their users.

 

 

Embeddings

While transformer models form the powerful machine architecture to process language, they cannot directly work with words. Transformers rely on embeddings to create a bridge between human language and its numerical representation for the machine model.

Hence, embeddings take on the role of a translator, making words comprehendible for ML models. It empowers machines to handle large amounts of textual data while capturing the semantic relationships in them and understanding their underlying meaning.

Thus, these embeddings lead to the building of databases that transformers use to generate useful outputs in NLP applications. Today, embeddings have also developed to present new ways of data representation with vector embeddings, leading organizations to choose between traditional and vector databases.

While here’s an article that delves deep into the comparison of traditional and vector databases, let’s also explore the concept of vector embeddings.

A glimpse into the realm of vector embeddings

These are a unique type of embedding used in natural language processing which converts words into a series of vectors. It enables words with similar meanings to have similar vector representations, producing a three-dimensional map of data points in the vector space.

 

Explore the role of vector embeddings in generative AI

 

Machines traditionally struggle with language because they understand numbers, not words. Vector embeddings bridge this gap by converting words into a numerical format that machines can process. More importantly, the captured relationships between words allow machines to perform NLP tasks like translation and sentiment analysis more effectively.

Here’s a video series providing a comprehensive exploration of embeddings and vector databases.

Vector embeddings are like a secret language for machines, enabling them to grasp the nuances of human language. However, when organizations are building their databases, they must carefully consider different factors to choose the right vector embedding model for their data.

However, database characteristics are not the only aspect to consider. Enterprises must also explore the different types of vector databases and their features. It is also a useful tactic to navigate through the top vector databases in the market.

Thus, embeddings and databases work hand-in-hand in enabling transformers to understand and process human language. These developments within the world of LLMs have also given rise to the idea of prompt engineering. Let’s understand this concept and its many facets.

Prompt engineering

It refers to the art of crafting clear and informative prompts when one interacts with large language models. Well-defined instructions have the power to unlock an LLM’s complete potential, empowering it to generate effective and desired outputs.

Effective prompt engineering is crucial because LLMs, while powerful, can be like complex machines with numerous functionalities. Clear prompts bridge the gap between the user and the LLM. Specifying the task, including relevant context, and structuring the prompt effectively can significantly improve the quality of the LLM’s output.

With the growing dominance of LLMs in today’s digital world, prompt engineering has become a useful skill to hone for individuals. It has led to increased demand for skilled, prompt engineers in the job market, making it a promising career choice for people. While it’s a skill to learn through experimentation, here is a 10-step roadmap to kickstart the journey.

prompt engineering architecture
Explaining the workflow for prompt engineering

Now that we have explored the different aspects contributing to the functionality of large language models, it’s time we navigate the processes for optimizing LLM performance.

Optimizing LLM performance

As businesses work with the design and use of different LLM applications, it is crucial to ensure the use of their full potential. It requires them to optimize LLM performance, creating enhanced accuracy, efficiency, and relevance of LLM results. Some common terms associated with the idea of optimizing LLMs are listed below:

Dynamic few-shot prompting

Beyond the standard few-shot approach, it is an upgrade that selects the most relevant examples based on the user’s specific query. The LLM becomes a resourceful tool, providing contextually relevant responses. Hence, dynamic few-shot prompting enhances an LLM’s performance, creating more captivating digital content.

 

How generative AI and LLMs work

 

Selective prediction

It allows LLMs to generate selective outputs based on their certainty about the answer’s accuracy. It enables the applications to avoid results that are misleading or contain incorrect information. Hence, by focusing on high-confidence outputs, selective prediction enhances the reliability of LLMs and fosters trust in their capabilities.

Predictive analytics

In the AI-powered technological world of today, predictive analytics have become a powerful tool for high-performing applications. The same holds for its role and support in large language models. The analytics can identify patterns and relationships that can be incorporated into improved fine-tuning of LLMs, generating more relevant outputs.

Here’s a crash course to deepen your understanding of predictive analytics!

 

 

Chain-of-thought prompting

It refers to a specific type of few-shot prompting that breaks down a problem into sequential steps for the model to follow. It enables LLMs to handle increasingly complex tasks with improved accuracy. Thus, chain-of-thought prompting improves the quality of responses and provides a better understanding of how the model arrived at a particular answer.

 

Read more about the role of chain-of-thought and zero-shot prompting in LLMs here

 

Zero-shot prompting

Zero-shot prompting unlocks new skills for LLMs without extensive training. By providing clear instructions through prompts, even complex tasks become achievable, boosting LLM versatility and efficiency. This approach not only reduces training costs but also pushes the boundaries of LLM capabilities, allowing us to explore their potential for new applications.

While these terms pop up when we talk about optimizing LLM performance, let’s dig deeper into the process and talk about some key concepts and practices that support enhanced LLM results.

Fine-tuning LLMs

It is a powerful technique that improves LLM performance on specific tasks. It involves training a pre-trained LLM using a focused dataset for a relevant task, providing the application with domain-specific knowledge. It ensures that the model output is refined for that particular context, making your LLM application an expert in that area.

Here is a detailed guide that explores the role, methods, and impact of fine-tuning LLMs. While this provides insights into ways of fine-tuning an LLM application, another approach includes tuning specific LLM parameters. It is a more targeted approach, including various parameters like the model size, temperature, context window, and much more.

Moreover, among the many techniques of fine-tuning, Direct Preference Optimization (DPO) and Reinforcement Learning from Human Feedback (RLHF) are popular methods of performance enhancement. Here’s a quick glance at comparing the two ways for you to explore.

 

RLHF v DPO - optimizing large language models
A comparative analysis of RLHF and DPO – Read more and in detail here

 

Retrieval augmented generation (RAG)

RAG or retrieval augmented generation is a LLM optimization technique that particularly addresses the issue of hallucinations in LLMs. An LLM application can generate hallucinated responses when prompted with information not present in their training set, despite being trained on extensive data.

 

Master your knowledge of retrieval augmented generation

 

The solution with RAG creates a bridge over this information gap, offering a more flexible approach to adapting to evolving information. Here’s a guide to assist you in implementing RAG to elevate your LLM experience.

 

Advanced RAG to elevate large language models
A glance into the advanced RAG to elevate your LLM experience

 

Hence, with these two crucial approaches to enhance LLM performance, the question comes down to selecting the most appropriate one.

RAG and fine-tuning

Let me share two valuable resources that can help you answer the dilemma of choosing the right technique for LLM performance optimization.

RAG and fine-tuning

The blog provides a detailed and in-depth exploration of the two techniques, explaining the workings of a RAG pipeline and the fine-tuning process. It also focuses on explaining the role of these two methods in advancing the capabilities of LLMs.

RAG vs fine-tuning

Once you are hooked by the importance and impact of both methods, delve into the findings of this article that navigates through the RAG vs fine-tuning dilemma. With a detailed comparison of the techniques, the blog takes it a step ahead and presents a hybrid approach for your consideration as well.

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

While building and optimizing are crucial steps in the journey of developing LLM applications, evaluating large language models is an equally important aspect.

Evaluating LLMs

 

large language models - Evaluation process to enhance LLM performance
Evaluation process to enhance LLM performance

 

It is the systematic process of assessing an LLM’s performance, reliability, and effectiveness across various tasks. Usually through a series of tests to gauge its strengths, weaknesses, and suitability for different applications, we can evaluate LLM performance.

It ensures that an LLM application shows the desired functionality while highlighting its areas of strengths and weaknesses. It is an effective way to determine which LLMs are best suited for specific tasks.

Learn more about the simple and easy techniques for evaluating LLMs.

 

 

Among the transforming trends of evaluating LLMs, some common aspects to consider during the evaluation process include:

  • Performance Metrics – It includes accuracy, fluency, and coherence to assess the quality of the LLM’s outputs
  • Generalization – It explores how well the LLM performs on unseen data, not just the data it was trained on
  • Robustness – It involves testing the LLM’s resilience against adversarial attacks or output manipulation
  • Ethical Considerations – It considers potential biases or fairness issues within the LLM’s outputs

Explore the top LLM evaluation methods you can use when testing your LLM applications. A key part of the process also involves understanding the challenges and risks associated with large language models.

Challenges and risks of LLMs

Like any other technological tool or development, LLMs also carry certain challenges and risks in their design and implementation. Some common issues associated with LLMs include hallucinations in responses, high toxic probabilities, bias and fairness, data security threats, and lack of accountability.

However, the problems associated with LLMs do not go unaddressed. The answer lies in the best practices you can take on when dealing with LLMs to mitigate the risks, and also in implementing the large language model operations (also known as LLMOps) process that puts special focus on addressing the associated challenges.

Hence, it is safe to say that as you start your LLM journey, you must navigate through various aspects and stages of development and operation to get a customized and efficient LLM application. The key to it all is to take the first step towards your goal – the rest falls into place gradually.

Some resources to explore

To sum it up – here’s a list of some useful resources to help you kickstart your LLM journey!

  • A list of best large language models in 2024
  • An overview of the 20 key technical terms to make you well-versed in the LLM jargon
  • A blog introducing you to the top 9 YouTube channels to learn about LLMs
  • A list of the top 10 YouTube videos to help you kickstart your exploration of LLMs
  • An article exploring the top 5 generative AI and LLM bootcamps

Bonus addition!

If you are unsure about bootcamps – here are some insights into their importance. The hands-on approach and real-time learning might be just the push you need to take your LLM journey to the next level! And it’s not too time-consuming, you’d know the most about LLMs in as much as 40 hours!

 

As we conclude our LLM exploration journey, take the next step and learn to build customized LLM applications with fellow enthusiasts in the field. Check out our in-person large language models BootCamp and explore the pathway to deepen your understanding of LLMs!
Huda Mahmood - Author
Huda Mahmood
| April 9

While language models in generative AI focus on textual data, vision language models (VLMs) bridge the gap between textual and visual data. Before we explore Moondream 2, let’s understand VLMs better.

Understanding vision language models

VLMs combine computer vision (CV) and natural language processing (NLP), enabling them to understand and connect visual information with textual data.

Some key capabilities of VLMs include image captioning, visual question answering, and image retrieval. It learns these tasks by training on datasets that pair images with their corresponding textual description. There are several large vision language models available in the market including GPT-4v, LLaVA, and BLIP-2.

 

Large language model bootcamp

 

However, these are large vision models requiring heavy computational resources to produce effective results, and that too at slow inference speeds. The solution has been presented in the form of small VLMs that provide a balance between efficiency and performance.

In this blog, we will look deeper into Moondream 2, a small vision language model.

What is Moondream 2?

Moondream 2 is an open-source vision language model. With only 1.86 billion parameters, it is a tiny VLM with weights from SigLIP and Phi-1.5. It is designed to operate seamlessly on devices with limited computational resources.

 

Weights for Moondream 2
Weights for Moondream 2

 

Let’s take a closer look at the defined weights for Moondream2.

SigLIP (Sigmoid Loss for Language Image Pre-Training)

It is a newer and simpler method that helps the computer learn just by looking at pictures and their captions, one at a time, making it faster and more effective, especially when training with lots of data. It is similar to a CLIP (Contrastive Language–Image Pre-training) model.

However, Moondream 2 has replaced softmax loss in CLIP with a simple pairwise sigmoid loss. The change ensures better performance because sigmoid loss only focuses on image-text pairs. Without the need for a global view of all pairwise data within a batch, the process becomes faster and more efficient.

 

Learn computer vision using Python

 

Phi-1.5

It is a small language model with 1.3 billion parameters and transformer-based architecture. Developed by Microsoft, the model was trained on 30 billion words, including information from its predecessor, Phi-1 and 20 billion words artificially created by another AI model, GPT-3.5.

With its unique training method, Phi-1.5 has mastered different skills required of a language model, like understanding common sense, following complex instructions, comprehending language, and retaining information. Moreover, it even outperforms its larger counterparts.

A closer look into Moondream 2

It is the latest and updated version of the model previously known as Moondream 1. Below is a quick comparison of the two models, highlighting the basic parameters of improvement.

 

Comparing Moondream 1 and 2
Comparing Moondream 1 and 2

 

Like typical vision language models, Moondream 2 interprets the visual data to provide textual responses based on the information. Some demos included in its repository highlight its capabilities. Let’s look at these demos below:

Demo 1

Moondream 2 was provided with the following image:

 

Moondream demo 1

 

Based on this image, the VLM was asked some relevant questions.

Question: What is the girl doing?

Answer: The girl is sitting at a table and eating a large hamburger.

Question: What color is the girl’s hair?

Answer: The girl’s hair is white.

The interaction with Moondream 2 highlights that the VLM is capable of understanding the basic image properties like the girl’s hair color. Moreover, it can also interpret the actions of the actors in an image from their position in a specific instance.

Demo 2

The VLM was provided with another image.

 

Moondream demo 2

 

The demo focused on asking the following:

Question: What is this?

Answer: The image features a computer server rack, which is a large metal structure designed to hold and organize multiple computer components, such as motherboards, cooling systems, and other peripherals. The rack is filled with various computer parts, including multiple computer chips, wires, and other electronic components. The rack is placed on a carpeted floor, and there is a couch in the background, suggesting that the setup is likely in a living or working space.

Question: What is behind the stand?

Answer: There is a brick wall behind the stand.

The above demo highlights the ability of Moondream 2 to explore and interpret complex visual outputs in great detail. The VLM provides in-depth textual information from the visual data. It also presents spacial understanding of the image components.

Hence, Moondream 2 is a promising addition to the world of vision language models with its refined capabilities to interpret visual data and provide in-depth textual output. Since we understand the strengths of the VLM, it is time to explore its drawbacks or weaknesses.

 

Here’s a list of  7 books you must explore when learning about computer vision

 

Limitations of Moondream 2

Before you explore the world of Moondream 2, you must understand its limitations when dealing with visual and textual data.

Generating inaccurate statements

It is important to understand that Moondream 2 may generate inaccurate statements, especially for complex topics or situations requiring real-world understanding. The model might also struggle to grasp subtle details or hidden meanings within instructions.

Presenting unconscious bias

Like any other VLM, Moondream 2 is also a product of the data is it trained on. Thus, it can reflect the biases of the world, perpetuating stereotypes or discriminatory views.

As a user, it’s crucial to be aware of this potential bias and to approach the model’s outputs with a critical eye. Don’t blindly accept everything it generates; use your own judgment and fact-check when necessary.

Mirroring prompts

VLMs will reflect the prompts provided to them. Hence, if a user prompts the model to generate offensive or inappropriate content, the model may comply. It’s important to be mindful of the prompts and avoid asking the model to create anything harmful or hurtful.

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

In conclusion…

To sum it up, Moondream 2 is a promising step in the development of vision language models. Powered by its key components and compact size, the model is efficient and fast. However, like any language model we use nowadays, Moondream 2 also requires its users to be responsible for ensuring the creation of useful content.

If you are ready to experiment with Moondream 2 now, install the necessary files and start right away! Here’s a look at what the VLM’s user interface looks like.

Fiza Author image
Fiza Fatima
| March 29

Large Language Models are growing smarter, transforming how we interact with technology. Yet, they stumble over a significant quality i.e. accuracy. Often, they provide unreliable information or guess answers to questions they don’t understand—guesses that can be completely wrong. Read more

This issue is a major concern for enterprises looking to leverage LLMs. How do we tackle this problem? Retrieval Augmented Generation (RAG) offers a viable solution, enabling LLMs to access up-to-date, relevant information, and significantly improving their responses.

Tune in to our podcast and dive deep into RAG, fine-tuning, LlamaIndex and LangChain in detail!

 

Understanding Retrieval Augmented Generation (RAG)

RAG is a framework that retrieves data from external sources and incorporates it into the LLM’s decision-making process. This allows the model to access real-time information and address knowledge gaps. The retrieved data is synthesized with the LLM’s internal training data to generate a response.

Retrieval Augmented Generation (RAG) Pipeline

Read more: RAG and finetuning: A comprehensive guide to understanding the two approaches

The challenge of bringing RAG based LLM applications to production

Prototyping a RAG application is easy, but making it performant, robust, and scalable to a large knowledge corpus is hard.

There are three important steps in a RAG framework i.e. Data Ingestion, Retrieval, and Generation. In this blog, we will be dissecting the challenges encountered based on each stage of the RAG  pipeline specifically from the perspective of production, and then propose relevant solutions. Let’s dig in!

Stage 1: Data Ingestion Pipeline

The ingestion stage is a preparation step for building a RAG pipeline, similar to the data cleaning and preprocessing steps in a machine learning pipeline. Usually, the ingestion stage consists of the following steps:

  • Collect data
  • Chunk data
  • Generate vector embeddings of chunks
  • Store vector embeddings and chunks in a vector database

The efficiency and effectiveness of the data ingestion phase significantly influence the overall performance of the system.

Common Pain Points in Data Ingestion Pipeline

12 Challenges in Building Production-Ready RAG based LLM Applications | Data Science Dojo

Challenge 1: Data Extraction:

  • Parsing Complex Data Structures: Extracting data from various types of documents, such as PDFs with embedded tables or images, can be challenging. These complex structures require specialized techniques to extract the relevant information accurately.
  • Handling Unstructured Data: Dealing with unstructured data, such as free-flowing text or natural language, can be difficult.
Proposed solutions
  • Better parsing techniques:Enhancing parsing techniques is key to solving the data extraction challenge in RAG-based LLM applications, enabling more accurate and efficient information extraction from complex data structures like PDFs with embedded tables or images. Llama Parse is a great tool by LlamaIndex that significantly improves data extraction for RAG systems by adeptly parsing complex documents into structured markdown.
  • Chain-of-the-table approach:The chain-of-table approach, as detailed by Wang et al., https://arxiv.org/abs/2401.04398 merges table analysis with step-by-step information extraction strategies. This technique aids in dissecting complex tables to pinpoint and extract specific data segments, enhancing tabular question-answering capabilities in RAG systems.
  • Mix-Self-Consistency:
    Large Language Models (LLMs) can analyze tabular data through two primary methods:

    • Direct prompting for textual reasoning.
    • Program synthesis for symbolic reasoning, utilizing languages like Python or SQL.

    According to the study “Rethinking Tabular Data Understanding with Large Language Models” by Liu and colleagues, LlamaIndex introduced the MixSelfConsistencyQueryEngine. This engine combines outcomes from both textual and symbolic analysis using a self-consistency approach, such as majority voting, to attain state-of-the-art (SoTA) results. Below is an example code snippet. For further information, visit LlamaIndex’s complete notebook.

Large Language Models Bootcamp | LLM

Challenge 2: Picking the Right Chunk Size and Chunking Strategy:

  1. Determining the Right Chunk Size: Finding the optimal chunk size for dividing documents into manageable parts is a challenge. Larger chunks may contain more relevant information but can reduce retrieval efficiency and increase processing time. Finding the optimal balance is crucial.
  2. Defining Chunking Strategy: Deciding how to partition the data into chunks requires careful consideration. Depending on the use case, different strategies may be necessary, such as sentence-based or paragraph-based chunking.
Proposed Solutions:
  • Fine Tuning Embedding Models:

Fine-tuning embedding models plays a pivotal role in solving the chunking challenge in RAG pipelines, enhancing both the quality and relevance of contexts retrieved during ingestion.

By incorporating domain-specific knowledge and training on pertinent data, these models excel in preserving context, ensuring chunks maintain their original meaning.

This fine-tuning process aids in identifying the optimal chunk size, striking a balance between comprehensive context capture and efficiency, thus minimizing noise.

Additionally, it significantly curtails hallucinations—erroneous or irrelevant information generation—by honing the model’s ability to accurately identify and extract relevant chunks.

According to experiments conducted by Llama Index, fine-tuning your embedding model can lead to a 5–10% performance increase in retrieval evaluation metrics.

  • Use Case-Dependent Chunking

Use case-dependent chunking tailors the segmentation process to the specific needs and characteristics of the application. Different use cases may require different granularity in data segmentation:

    • Detailed Analysis: Some applications might benefit from very fine-grained chunks to extract detailed information from the data.
    • Broad Overview: Others might need larger chunks that provide a broader context, important for understanding general themes or summaries.
  • Embedding Model-Dependent Chunking

Embedding model-dependent chunking aligns the segmentation strategy with the characteristics of the underlying embedding model used in the RAG framework. Embedding models convert text into numerical representations, and their capacity to capture semantic information varies:

    • Model Capacity: Some models are better at understanding broader contexts, while others excel at capturing specific details. Chunk sizes can be adjusted to match what the model handles best.
    • Semantic Sensitivity: If the embedding model is highly sensitive to semantic nuances, smaller chunks may be beneficial to capture detailed semantics. Conversely, for models that excel at capturing broader contexts, larger chunks might be more appropriate.

Challenge 3: Creating a Robust and Scalable Pipeline:

One of the critical challenges in implementing RAG is creating a robust and scalable pipeline that can effectively handle a large volume of data and continuously index and store it in a vector database. This challenge is of utmost importance as it directly impacts the system’s ability to accommodate user demands and provide accurate, up-to-date information.

  1. Proposed Solutions
  • Building a modular and distributed system:

To build a scalable pipeline for managing billions of text embeddings, a modular and distributed system is crucial. This system separates the pipeline into scalable units for targeted optimization and employs distributed processing for parallel operation efficiency. Horizontal scaling allows the system to expand with demand, supported by an optimized data ingestion process and a capable vector database for large-scale data storage and indexing.

This approach ensures scalability and technical robustness in handling vast amounts of text embeddings.

Stage 2: Retrieval

Retrieval in RAG involves the process of accessing and extracting information from authoritative external knowledge sources, such as databases, documents, and knowledge graphs. If the information is retrieved correctly in the right format, then the answers generated will be correct as well. However, you know the catch. Effective retrieval is a pain, and you can encounter several issues during this important stage.

RAG Pain Paints and Solutions - Retrieval

Common Pain Points in Data Ingestion Pipeline

Challenge 1: Retrieved Data Not in Context

The RAG system can retrieve data that doesn’t qualify to bring relevant context to generate an accurate response. There can be several reasons for this.

  • Missed Top Rank Documents: The system sometimes doesn’t include essential documents that contain the answer in the top results returned by the system’s retrieval component.
  • Incorrect Specificity: Responses may not provide precise information or adequately address the specific context of the user’s query
  • Losing Relevant Context During Reranking: This occurs when documents containing the answer are retrieved from the database but fail to make it into the context for generating an answer.
Proposed Solutions:
  • Query Augmentation: Query augmentation enables RAG to retrieve information that is in context by enhancing the user queries with additional contextual details or modifying them to maximize relevancy. This involves improving the phrasing, adding company-specific context, and generating sub-questions that help contextualize and generate accurate responses
    • Rephrasing
    • Hypothetical document embeddings
    • Sub-queries
  • Tweak retrieval strategies: Llama Index offers a range of retrieval strategies, from basic to advanced, to ensure accurate retrieval in RAG pipelines. By exploring these strategies, developers can improve the system’s ability to incorporate relevant information into the context for generating accurate responses.
    • Small-to-big sentence window retrieval,
    • recursive retrieval
    • semantic similarity scoring.
  • Hyperparameter tuning for chunk size and similarity_top_k: This solution involves adjusting the parameters of the retrieval process in RAG models. More specifically, we can tune the parameters related to chunk size and similarity_top_k.
    The chunk_size parameter determines the size of the text chunks used for retrieval, while similarity_top_k controls the number of similar chunks retrieved.
    By experimenting with different values for these parameters, developers can find the optimal balance between computational efficiency and the quality of retrieved information.
  • Reranking: Reranking retrieval results before they are sent to the language model has proven to improve RAG systems’ performance significantly.
    By retrieving more documents and using techniques like CohereRerank, which leverages a reranker to improve the ranking order of the retrieved documents, developers can ensure that the most relevant and accurate documents are considered for generating responses. This reranking process can be implemented by incorporating the reranker as a postprocessor in the RAG pipeline.

Challenge 2: Task-Based Retrieval

If you deploy a RAG-based service, you should expect anything from the users and you should not just limit your RAG in production applications to only be highly performant for question-answering tasks.

Users can ask a wide variety of questions. Naive RAG stacks can address queries about specific facts, such as details on a company’s Diversity & Inclusion efforts in 2023 or the narrator’s activities at Google.

However, questions may also seek summaries (“Provide a high-level overview of this document”) or comparisons (“Compare X and Y”).

Different retrieval methods may be necessary for these diverse use cases.

Proposed Solutions
  • Query Routing: This technique involves retaining the initial user query while identifying the appropriate subset of tools or sources that pertain to the query. By routing the query to the suitable options, routing ensures that the retrieval process is fine-tuned to the specific tools or sources that are most likely to yield accurate and relevant information.

Challenge 3: Optimize the Vector DB to look for correct documents

The problem in the retrieval stage of RAG is about ensuring the lookup to a vector database effectively retrieves accurate documents that are relevant to the user’s query.

Hereby, we must address the challenge of semantic matching by seeking documents and information that are not just keyword matches, but also conceptually aligned with the meaning embedded within the user query.

Proposed Solutions:
  • Hybrid Search:

Hybrid search tackles the challenge of optimal document lookup in vector databases. It combines semantic and keyword searches, ensuring retrieval of the most relevant documents.

  • Semantic Search: Goes beyond keywords, considering document meaning and context for accurate results.
  • Keyword Search: Excellent for queries with specific terms like product codes, jargon, or dates.

Hybrid search strikes a balance, offering a comprehensive and optimized retrieval process. Developers can further refine results by adjusting weighting between semantic and keyword search. This empowers vector databases to deliver highly relevant documents, streamlining document lookup.

Challenge 4: Chunking Large Datasets

When we put large amounts of data into a RAG-based product we eventually have to parse and then chunk the data because when we retrieve info – we can’t really retrieve a whole pdf – but different chunks of it.

However, this can present several pain points.

  • Loss of Context: One primary issue is the potential loss of context when breaking down large documents into smaller chunks. When documents are divided into smaller pieces, the nuances and connections between different sections of the document may be lost, leading to incomplete representations of the content.
  • Optimal Chunk Size: Determining the optimal chunk size becomes essential to balance capturing essential information without sacrificing speed. While larger chunks could capture more context, they introduce more noise and require additional processing time and computational costs. On the other hand, smaller chunks have less noise but may not fully capture the necessary context.

Read more: Optimize RAG efficiency with LlamaIndex: The perfect chunk size

Proposed Solutions:
  • Document Hierarchies: This is a pre-processing step where you can organize data in a structured manner to improve information retrieval by locating the most relevant chunks of text.
  • Knowledge Graphs: Representing related data through graphs, enabling easy and quick retrieval of related information and reducing hallucinations in RAG systems.
  • Sub-document Summary: Breaking down documents into smaller chunks and injecting summaries to improve RAG retrieval performance by providing global context awareness.
  • Parent Document Retrieval: Retrieving summaries and parent documents in a recursive manner to improve information retrieval and response generation in RAG systems.
  • RAPTOR: RAPTOR recursively embeds, clusters, and summarizes text chunks to construct a tree structure with varying summarization levels. Read more
  • Recursive Retrieval: Retrieval of summaries and parent documents in multiple iterations to improve performance and provide context-specific information in RAG systems.

Challenge 5: Retrieving Outdated Content from the Database

Imagine a RAG app working perfectly for 100 documents. But what if a document gets updated? The app might still use the old info (stored as an “embedding”) and give you answers based on that, even though it’s wrong.

Proposed Solutions:
  • Meta-Data Filtering: It’s like a label that tells the app if a document is new or changed. This way, the app can always use the latest and greatest information.

Stage 3: Generation

While the quality of the response generated largely depends on how good the retrieval of information was, there still are tons of aspects you must consider. After all, the quality of the response and the time it takes to generate the response directly impacts the satisfaction of your user.

RAG Pain Points - Generation Stage

Challenge 1: Optimized Response Time for User

The prompt response to user queries is vital for maintaining user engagement and satisfaction.

Proposed Solutions:
  1. Semantic Caching: Semantic caching addresses the challenge of optimizing response time by implementing a cache system to store and quickly retrieve pre-processed data and responses. It can be implemented at two key points in an RAG system to enhance speed:
    • Retrieval of Information: The first point where semantic caching can be implemented is in retrieving the information needed to construct the enriched prompt. This involves pre-processing and storing relevant data and knowledge sources that are frequently accessed by the RAG system.
    • Calling the LLM: By implementing a semantic cache system, the pre-processed data and responses from previous interactions can be stored. When similar queries are encountered, the system can quickly access these cached responses, leading to faster response generation.

Challenge 2: Inference Costs

The cost of inference for large language models (LLMs) is a major concern, especially when considering enterprise applications.

Some of the factors that contribute to the inference cost of LLMs include context window size, model size, and training data.

Proposed Solutions:

  1. Minimum viable model for your use case: Not all LLMs are created equal. There are models specifically designed for tasks like question answering, code generation, or text summarization. Choosing an LLM with expertise in your desired area can lead to better results and potentially lower inference costs because the model is already optimized for that type of work.
  2. Conservative Use of LLMs in Pipeline: By strategically deploying LLMs only in critical parts of the pipeline where their advanced capabilities are essential, you can minimize unnecessary computational expenditure. This selective use ensures that LLMs contribute value where they’re most needed, optimizing the balance between performance and cost.

Challenge 3: Data Security

The problem of data security in RAG systems refers to the concerns and challenges associated with ensuring the security and integrity of Language Models LLMs used in RAG applications. As LLMs become more powerful and widely used, there are ethical and privacy considerations that need to be addressed to protect sensitive information and prevent potential abuses.

These include:

    • Prompt injection
    • Sensitive information disclosure
    • Insecure outputs

Proposed Solutions: 

  1. Multi-tenancy: Multi-tenancy is like having separate, secure rooms for each user or group within a large language model system, ensuring that everyone’s data is private and safe.It makes sure that each user’s data is kept apart from others, protecting sensitive information from being seen or accessed by those who shouldn’t.By setting up specific permissions, it controls who can see or use certain data, keeping the wrong hands off of it. This setup not only keeps user information private and safe from misuse but also helps the LLM follow strict rules and guidelines about handling and protecting data.
  1. NeMo Guardrails: NeMo Guardrails is an open-source security toolset designed specifically for language models, including large language models. It offers a wide range of programmable guardrails that can be customized to control and guide LLM inputs and outputs, ensuring secure and responsible usage in RAG systems.

Ensuring the Practical Success of the RAG Framework

This article explored key pain points associated with RAG systems, ranging from missing content and incomplete responses to data ingestion scalability and LLM security. For each pain point, we discussed potential solutions, highlighting various techniques and tools that developers can leverage to optimize RAG system performance and ensure accurate, reliable, and secure responses.

By addressing these challenges, RAG systems can unlock their full potential and become a powerful tool for enhancing the accuracy and effectiveness of LLMs across various applications.

Huda Mahmood - Author
Huda Mahmood
| March 28

Knowledge graphs and LLMs are the building blocks of the most recent advancements happening in the world of artificial intelligence (AI). Combining knowledge graphs (KGs) and LLMs produces a system that has access to a vast network of factual information and can understand complex language.

The system has the potential to use this accessibility to answer questions, generate textual outputs, and engage with other NLP tasks. This blog aims to explore the potential of integrating knowledge graphs and LLMs, navigating through the promise of revolutionizing AI.

Introducing knowledge graphs and LLMs

Before we understand the impact and methods of integrating KGs and LLMs, let’s visit the definition of the two concepts.

What are knowledge graphs (KGs)?

They are a visual web of information that focuses on connecting factual data in a meaningful manner. Each set of data is represented as a node with edges building connections between them. This representational storage of data allows a computer to recognize information and relationships between the data points.

KGs organize data to highlight connections and new relationships in a dataset. Moreover, it enabled improved search results as knowledge graphs integrate the contextual information to provide more relevant results.

 

Large language model bootcamp

What are large language models (LLMs)?

LLMs are a powerful tool within the world of AI using deep learning techniques for general-purpose language generation and other natural language processing (NLP) tasks. They train on massive amounts of textual data to produce human-quality texts.

Large language models have revolutionized human-computer interactions with the potential for further advancements. However, LLMs are limited in the factual grounding of their results. It makes LLMs able to produce high-quality and grammatically accurate results that can be factually inaccurate.

 

knowledge graphs and LLMs
An overview of knowledge graphs and LLMs – Source: arXiv

 

Combining KGs and LLMs

Within the world of AI and NLP, integrating the concepts of KGs and LLMs has the potential to open up new avenues of exploration. While knowledge graphs cannot understand language, they are good at storing factual data. Unlike KGs, LLMs excel in language understanding but lack factual grounding.

Combining the two entities brings forward a solution that addresses the weaknesses of both. The strengths of KGs and LLMs cover each concept’s limitations, producing more accurate and better-represented results.

Frameworks to combine KGs and LLMs

It is one thing to talk about combining knowledge graphs and large language models, implementing the idea requires planning and research. So far, researchers have explored three different frameworks aiming to integrate KGs and LLMs for enhanced outputs.

In this section, we will explore these three frameworks that are published as a paper in IEEE Transactions on Knowledge and Data Engineering.

 

Frameworks for integrating KGs and LLMs
Frameworks for integrating KGs and LLMs – Source: arXiv

 

KG-enhanced LLMs

This framework focuses on using knowledge graphs for training LLMs. The factual knowledge and relationship links in the KGs become accessible to the LLMs in addition to the traditional textual data during the training phase. A LLM can then learn from the information available in KGs.

As a result, LLMs can get a boost in factual accuracy and grounding by incorporating the data from KGs. It will also enable the models to fact-check the outputs and produce more accurate and informative results.

LLM-augmented KGs

This design shifts the structure of the first framework. Instead of KGs enhancing LLMs, they leverage the reasoning power of large language models to improve knowledge graphs. It makes LLMs smart assistants to improve the output of KGs, curating their information representation.

Moreover, this framework can leverage LLMs to find problems and inconsistencies in information connections of KGs. The high reasoning of LLMs also enables them to infer new relationships in a knowledge graph, enriching its outputs.

This builds a pathway to create more comprehensive and reliable knowledge graphs, benefiting from the reasoning and inference abilities of LLMs.

 

Explore data visualization – the best way to communicate

 

Synergized LLMs + KGs

This framework proposes a mutually beneficial relationship between the two AI components. Each entity works to improve the other through a feedback loop. It is designed in the form of a continuous learning cycle between LLMs and KGs.

It can be viewed as a concept that combines the two above-mentioned frameworks into a single design where knowledge graphs enhance language model outputs and LLMs analyze and improve KGs.

It results in a dynamic cycle where KGs and LLMs constantly improve each other. The iterative design of this integration framework leads to a more powerful and intelligent system overall.

While we have looked at the three different frameworks of integration of KGs and LLMs, the synergized LLMs + KGs is the most advanced approach in this field. It promises to unlock the full potential of both entities, supporting the creation of superior AI systems with enhanced reasoning, knowledge representation, and text generation capabilities.

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

Future of LLM and KG integration

Combining the powers of knowledge graphs and large language models holds immense potential in various fields. Some plausible possibilities are discussed below.

Educational revolution

With access to knowledge graphs, LLMs can generate personalized educational content for students, encompassing a wide range of subjects and topics. The data can be used to generate interactive lessons, provide detailed feedback, and answer questions with factual accuracy.

Enhancing scientific research

The integrated frameworks provide an ability to analyze vast amounts of scientific data, identify patterns, and even suggest new hypotheses. The combination has the potential to accelerate scientific research across various fields.

 

 

Intelligent customer service

With useful knowledge representations of KGs, LLMs can generate personalized and more accurate support. It will also enhance their ability to troubleshoot issues and offer improved recommendations, providing an intelligent customer experience to the users of any enterprise.

Thus, the integration of knowledge graphs and LLMs has the potential to boost the development of AI-powered tasks and transform the field of NLP.

Huda Mahmood - Author
Huda Mahmood
| March 23

Natural language processing (NLP) and large language models (LLMs) have been revolutionized with the introduction of transformer models. These refer to a type of neural network architecture that excels at tasks involving sequences.

While we have talked about the details of a typical transformer architecture, in this blog we will explore the different types of the models.

How to categorize transformer models?

Transformers ensure the efficiency of LLMs in processing information. Their role is critical to ensure improved accuracy, faster training on data, and wider applicability. Hence, it is important to understand the different model types available to choose the right one for your needs.

 

Large language model bootcamp

However, before we delve into the many types of transformer models, it is important to understand the basis of their classification.

Classification by transformer architecture

The most fundamental categorization of transformer models is done based on their architecture. The variations are designed to perform specific tasks or cater to the limitations of the base architecture. The very common model types under this category include encoder-only, decoder-only, and encoder-decoder transformers.

Categorization based on pre-training approaches

While architecture is a basic component of consideration, the training techniques are equally crucial components for transformers. Pre-training approaches refer to the techniques used to train a transformer on a general dataset before finetuning it to perform specific tasks.

Some common approaches that define classification under this category include Masked Language Models (MLMs), autoregressive models, and conditional transformers.

This presents a general outlook on classifying transformer models. While we now know the types present under each broader category, let’s dig deeper into each transformer model type.

 

Read in detail about transformer architectures

 

Architecture-based classification

 

Architecture of transformer models
The general architecture of transformer models

 

Encoder-only transformer

As the name suggests, this architectural type uses only the encoder part of the transformer, focusing on encoding the input sequence. For this model type, understanding the input sequence is crucial while generating an output sequence is not required.

Some common applications of an encoder-only transformer include:

Text classification

It is focused on classifying the input data based on defined parameters. It is often used in email spam filters to categorize incoming emails. The transformer model can also train over the patterns for effective filtration of unwanted messages.

Sentimental analysis

This feature makes it an appropriate choice for social media companies to analyze customer feedback and their emotion toward a service or product. It provides useful data insights, leading to the creation of effective strategies to enhance customer satisfaction.

Anomaly detection

It is particularly useful for finance companies. The analysis of financial transactions allows the timely detection of anomalies. Hence, possible fraudulent activities can be addressed promptly.

Other uses of an encoder-only transformer include question-answering, speech recognition, and image captioning.

Decoder-only transformer

It is a less common type of transformer model that uses only the decoder component to generate text sequences based on input prompts. The self-attention mechanism allows the model to focus on previously generated outputs in the sequence, enabling it to refine the output and create more contextually aware results.

Some common uses of decoder-only transformers include:

Text summarization

It can iteratively generate textual summaries of the input, focusing on including the important aspects of information.

Text generation

It builds on a provided prompt to generate relevant textual outputs. The results cover a diverse range of content types, like poems, codes, and snippets. It is capable of iterating the process to create connected and improved responses.

Chatbots

It is useful to handle conversational interactions via chatbots. The decoder can also consider previous conversations to formulate relevant responses.

 

Explore the role of attention mechanism in transformers

 

Encoder-decoder Transformer

This is a classic architectural type of transformer, efficiently handling sequence-to-sequence tasks, where you need to transform one type of sequence (like text) into another (like a translation or summary). An encoder processes the input sequence while a decoder is used to generate an output sequence.

Some common uses of an encoder-decoder transformer include:

Machine translation

Since the sequence is important at both the input and output, it makes this transformer model a useful tool for translation. It also considers contextual references and relationships between words in both languages.

Text summarization

While this use overlaps with that of a decoder-only transformer, text summarization differs from an encoder-decoder transformer due to its focus on the input sequence. It enables the creation of summaries that focus on relevant aspects of the text highlighted in an input prompt.

Question-answering

It is important to understand the question before providing a relevant answer. An encoder-decoder transformer allows this focus on both ends of the communication, ensuring each question is understood and answered appropriately.

This concludes our exploration of architecture-based transformer models. Let’s explore the classification from the lens of pre-training approaches.

Categorization based on pre-training approaches

While the architectural differences provide a basis for transformer types, the models can be further classified based on their techniques of pre-training.

Let’s explore the various transformer models segregated based on pre-training approaches.

Masked Language Models (MLMs)

Models with this pre-training approach are usually encoder-only in architecture. They are trained to predict a masked word in a sentence based on the contextual information of the surrounding words. The training enables these model types to become efficient in understanding language relationships.

Some common MLM applications are:

Boosting downstream NLP tasks

MLMs train on massive datasets, enabling the models to develop a strong understanding of language context and relationships between words. This knowledge enables MLM models to contribute and excel in diverse NLP applications.

General-purpose NLP tool

The enhanced learning, knowledge, and adaptability of MLMs make them a part of multiple NLP applications. Developers leverage this versatility of pre-trained MLMs to build a basis for different NLP tools.

Efficient NLP development

The pre-trained foundation of MLMs reduces the time and resources needed for the deployment of NLP applications. It promotes innovation, faster development, and efficiency.

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

Autoregressive models

Typically built using a decoder-only architecture, this pre-training model is used to generate sequences iteratively. It can predict the next word based on the previous one in the text you have written. Some common uses of autoregressive models include:

Text generation

The iterative prediction from the model enables it to generate different text formats. From codes and poems to musical pieces, it can create all while iteratively refining the output as well.

Chatbots

The model can also be utilized in a conversational environment, creating engaging and contextually relevant responses,

Machine translation

While encoder-decoder models are commonly used for translation tasks, some languages with complex grammatical structures are supported by autoregressive models.

Conditional transformer

This transformer model incorporates the additional information of a condition along with the main input sequence. It enables the model to generate highly specific outputs based on particular conditions, ensuring more personalized results.

Some uses of conditional transformers include:

Machine translation with adaptation

The conditional aspect enables the model to set the target language as a condition. It ensures better adjustment of the model to the target language’s style and characteristics.

Summarization with constraints

Additional information allows the model to generate summaries of textual inputs based on particular conditions.

Speech recognition with constraints

With the consideration of additional factors like speaker ID or background noise, the recognition process enhances to produce improved results.

Future of transformer model types

While numerous transformer model variations are available, the ongoing research promises their further exploration and growth. Some major points of further development will focus on efficiency, specialization for various tasks, and integration of transformers with other AI techniques.

Transformers can also play a crucial role in the field of human-computer interaction with their enhanced capabilities. The growth of transformers will definitely impact the future of AI. However, it is important to understand the uses of each variation of a transformer model before you choose the one that fits your requirements.

avatar-180x180
Ayesha Imran
| March 22

In the dynamic field of artificial intelligence, Large Language Models (LLMs) are groundbreaking innovations shaping how we interact with digital environments. These sophisticated models, trained on vast collections of text, have the extraordinary ability to comprehend and generate text that mirrors human language, powering a variety of applications from virtual assistants to automated content creation.

The essence of LLMs lies not only in their initial training but significantly in fine-tuning, a crucial step to refine these models for specialized tasks and ensure their outputs align with human expectations.

Introduction to finetuning

Finetuning LLMs involves adjusting pre-trained models to perform specific functions more effectively, enhancing their utility across different applications. This process is essential because, despite the broad knowledge base acquired through initial training, LLMs often require customization to excel in particular domains or tasks.

 

Explore the concept of finetuning in detail here

 

For instance, a model trained on a general dataset might need fine-tuning to understand the nuances of medical language or legal jargon, making it more relevant and effective in those contexts.

Enter Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO), two leading methodologies for finetuning LLMs. RLHF utilizes a sophisticated feedback loop, incorporating human evaluations and a reward model to guide the AI’s learning process.

On the other hand, DPO adopts a more straightforward approach, directly applying human preferences to influence the model’s adjustments. Both strategies aim to enhance model performance and ensure the outputs are in tune with user needs, yet they operate on distinct principles and methodologies.

 

Large language model bootcamp

This blog post aims to unfold the layers of RLHF and DPO, drawing a comparative analysis to elucidate their mechanisms, strengths, and optimal use cases.

Understanding these fine-tuning methods paves the path to deploying LLMs that not only boast high performance but also resonate deeply with human intent and preferences, marking a significant step towards achieving more intuitive and effective AI-driven solutions. 

Examples of how fine-tuning improves performance in practical applications

  • Customer Service Chatbots: Fine-tuning an LLM on customer service transcripts can enhance its ability to understand and respond to user queries accurately, improving customer satisfaction. 
  • Legal Document Analysis: By fine-tuning on legal texts, LLMs can become adept at navigating complex legal language, aiding in tasks like contract review or legal research. 
  • Medical Diagnosis Support: LLMs fine-tuned with medical data can assist healthcare professionals by providing more accurate information retrieval and patient interaction, thus enhancing diagnostic processes.

Delving into reinforcement learning from human feedback (RLHF)

Explanation of RLHF and its components

Reinforcement Learning from Human Feedback (RLHF) is a technique used to fine-tune AI models, particularly language models, to enhance their performance based on human feedback.

The core components of RLHF include the language model being fine-tuned, the reward model that evaluates the language model’s outputs, and the human feedback that informs the reward model. This process ensures that the language model produces outputs more aligned with human preferences.

Theoretical foundations of RLHF

RLHF is grounded in reinforcement learning, where the model learns from actions rather than from a static dataset.

Unlike supervised learning, where models learn from labeled data or unsupervised learning, where models identify patterns in data, reinforcement learning models learn from the consequences of their actions, guided by rewards. In RLHF, the “reward” is determined by human feedback, which signifies the model’s success in generating desirable outputs.

 

The RLHF process for finetuning LLMs
The RLHF process – Source: AI Changes Everything

 

Four-step process of RLHF

  1. Pretraining the language model with self-supervision

  • Data Gathering: The process begins by collecting a vast and diverse dataset, typically encompassing a wide range of topics, languages, and writing styles. This dataset serves as the initial training ground for the language model. 
  • Self-Supervised Learning: Using this dataset, the model undergoes self-supervised learning. Here, the model is trained to predict parts of the text given other parts. For instance, it might predict the next word in a sentence based on the previous words. This phase helps the model grasp the basics of language, including grammar, syntax, and some level of contextual understanding. 
  • Foundation Building: The outcome of this stage is a foundational model that has a general understanding of language. It can generate text and understand some context but lacks specialization or fine-tuning for specific tasks or preferences. 
  1. Ranking model’s outputs based on human feedback

  • Generation and Evaluation: Once pretraining is complete, the model starts generating text outputs, which are then evaluated by humans. This could involve tasks like completing sentences, answering questions, or engaging in dialogue. 
  • Scoring System: Human evaluators use a scoring system to rate each output. They consider factors like how relevant, coherent, or engaging the text is. This feedback is crucial as it introduces the model to human preferences and standards. 
  • Adjustment for Bias and Diversity: Care is taken to ensure the diversity of evaluators and mitigate biases in feedback. This helps in creating a balanced and fair assessment criterion for the model’s outputs. 

 

Here’s your guide to understanding LLMs

 

  1. Training a reward model to mimic human ratings

  • Modeling Human Judgment: The scores and feedback from human evaluators are then used to train a separate model, known as the reward model. This model aims to understand and predict the scores human evaluators would give to any piece of text generated by the language model. 
  • Feedback Loop: The reward model effectively creates a feedback loop. It learns to distinguish between high-quality and low-quality outputs based on human ratings, encapsulating the criteria humans use to judge the text. 
  • Iteration for Improvement: This step might involve several iterations of feedback collection and reward model adjustment to accurately capture human preferences. 
  1. Finetuning the language model using feedback from the reward model

  • Integration of Feedback: The insights gained from the reward model are used to fine-tune the language model. This involves adjusting the model’s parameters to increase the likelihood of generating text that aligns with the rewarded behaviors. 
  • Reinforcement Learning Techniques: Techniques such as Proximal Policy Optimization (PPO) are employed to methodically adjust the model. The model is encouraged to “explore” different ways of generating text but is “rewarded” more when it produces outputs that are likely to receive higher scores from the reward model. 
  • Continuous Improvement: This fine-tuning process is iterative and can be repeated with new sets of human feedback and reward model adjustments, continuously improving the language model’s alignment with human preferences. 

The iterative process of RLHF allows for continuous improvement of the language model’s outputs. Through repeated cycles of feedback and adjustment, the model refines its approach to generating text, becoming better at producing outputs that meet human standards of quality and relevance.

 

Using a reward model for finetuning LLMs
Using a reward model for finetuning LLMs – Source: nownextlater.ai

 

Exploring direct preference optimization (DPO)

Introduction to the concept of DPO as a direct approach

Direct Preference Optimization (DPO) represents a streamlined method for fine-tuning large language models (LLMs) by directly incorporating human preferences into the training process.

This technique simplifies the adaptation of AI systems to better meet user needs, bypassing the complexities associated with constructing and utilizing reward models.

Theoretical foundations of DPO

DPO is predicated on the principle that direct human feedback can effectively guide the development of AI behavior.

By directly using human preferences as a training signal, DPO simplifies the alignment process, framing it as a direct learning task. This method proves to be both efficient and effective, offering advantages over traditional reinforcement learning approaches like RLHF.

 

Finetuning LLMs using DPO
Finetuning LLMs using DPO – Source: Medium

 

Steps involved in the DPO process

  1. Training the language model through self-supervision

  • Data Preparation: The model starts with self-supervised learning, where it is exposed to a wide array of text data. This could include everything from books and articles to websites, encompassing a variety of topics, styles, and contexts. 
  • Learning Mechanism: During this phase, the model learns to predict text sequences, essentially filling in blanks or predicting subsequent words based on the preceding context. This method helps the model to grasp the fundamentals of language structure, syntax, and semantics without explicit task-oriented instructions. 
  • Outcome: The result is a baseline language model capable of understanding and generating coherent text, ready for further specialization based on specific human preferences. 
  1. Collecting pairs of examples and obtaining human ratings

  • Generation of Comparative Outputs: The model generates pairs of text outputs, which might vary in tone, style, or content focus. These pairs are then presented to human evaluators in a comparative format, asking which of the two better meets certain criteria such as clarity, relevance, or engagement. 
  • Human Interaction: Evaluators provide their preferences, which are recorded as direct feedback. This step is crucial for capturing nuanced human judgments that might not be apparent from purely quantitative data. 
  • Feedback Incorporation: The preferences gathered from this comparison form the foundational data for the next phase of optimization. This approach ensures that the model’s tuning is directly influenced by human evaluations, making it more aligned with actual user expectations and preferences. 
  1. Training the model using a cross-entropy-based loss function

  • Optimization Technique: Armed with pairs of examples and corresponding human preferences, the model undergoes fine-tuning using a binary cross-entropy loss function. This statistical method compares the model’s output against the preferred outcomes, quantifying how well the model’s predictions match the chosen preferences.

 

finetuning LLMs

 

  • Adjustment Process: The model’s parameters are adjusted to minimize the loss function, effectively making the preferred outputs more likely in future generations. This process iteratively improves the model’s alignment with human preferences, refining its ability to generate text that resonates with users. 
  1. Constraining the model to maintain its generativity

  • Balancing Act: While the model is being fine-tuned to align closely with human preferences, it’s vital to ensure that it doesn’t lose its generative diversity. The process involves carefully adjusting the model to incorporate feedback without overfitting to specific examples or restricting its creative capacity. 
  • Ensuring Flexibility: Techniques and safeguards are put in place to ensure the model remains capable of generating a wide range of responses. This includes regular evaluations of the model’s output diversity and implementing mechanisms to prevent the narrowing of its generative abilities. 
  • Outcome: The final model retains its ability to produce varied and innovative text while being significantly more aligned with human preferences, demonstrating an enhanced capability to engage users in a meaningful way. 

DPO eliminates the need for a separate reward model by treating the language model’s adjustment as a direct optimization problem based on human feedback. This simplification reduces the layers of complexity typically involved in model training, making the process more efficient and directly focused on aligning AI outputs with user preferences.

Comparative analysis: RLHF vs. DPO

After exploring both Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO), we’re now at a point where we can compare these two key methods used to fine-tune Large Language Models (LLMs). This side-by-side look aims to clarify the differences and help decide which method might be better for certain situations. 

Direct comparison

  • Training Efficiency: RLHF involves several steps, including pre-training, collecting feedback, training a reward model, and then fine-tuning. This process is detailed and requires a lot of computer power and setup time. On the other hand, DPO is simpler and more straightforward because it optimizes the model directly based on what people prefer, often leading to quicker results. 
  • Data Requirements: RLHF uses a variety of feedback, such as scores or written comments, which means it needs a wide range of input to train well. DPO, however, focuses on comparing pairs of options to see which one people like more, making it easier to collect the needed data. 
  • Model Performance: RLHF is very flexible and can be fine-tuned to perform well in complex situations by understanding detailed feedback. DPO is great for making quick adjustments to align with what users want, although it might not handle varied feedback as well as RLHF. 
  • Scalability: RLHF’s detailed process can make it hard to scale up due to its high computer resource needs. DPO’s simpler approach means it can be scaled more easily, which is particularly beneficial for projects with limited resources. 

Pros and cons

  • Advantages of RLHF: Its ability to work with many kinds of feedback gives RLHF an edge in tasks that need detailed customization. This makes it well-suited for projects that require a deep understanding and nuanced adjustments. 
  • Disadvantages of RLHF: The main drawback is its complexity and the need for a reward model, which makes it more demanding in terms of computational resources and setup. Also, the quality and variety of feedback can significantly influence how well the fine-tuning works. 
  • Advantages of DPO: DPO’s more straightforward process means faster adjustments and less demand on computational resources. It integrates human preferences directly, leading to a tight alignment with what users expect. 
  • Disadvantages of DPO: The main issue with DPO is that it might not do as well with tasks needing more nuanced feedback, as it relies on binary choices. Also, gathering a large amount of human-annotated data might be challenging.

 

Comparing the RLHF and DPO
Comparing the RLHF and DPO – Source: arxiv.org

 

Scenarios of application

  • Ideal Use Cases for RLHF: RLHF excels in scenarios requiring customized outputs, like developing chatbots or systems that need to understand the context deeply. Its ability to process complex feedback makes it highly effective for these uses. 
  • Ideal Use Cases for DPO: When you need quick AI model adjustments and have limited computational resources, DPO is the way to go. It’s especially useful for tasks like adjusting sentiments in text or decisions that boil down to yes/no choices, where its direct approach to optimization can be fully utilized.
Feature  RLHF  DPO 
Training Efficiency  Multi-step and computationally intensive due to the iterative nature and involvement of a reward model.  More straightforward and computationally efficient by directly using human preferences, often leading to faster convergence. 
Data Requirements  Requires diverse feedback, including numerical ratings and textual annotations, necessitating a comprehensive mix of responses.  Generally relies on pairs of examples with human ratings, simplifying the preference learning process with less complex input. 
Model Performance  Offers adaptability and nuanced influence, potentially leading to superior performance in complex scenarios.  Efficient in quickly aligning model outputs with user preferences but may lack flexibility for varied feedback. 
Scalability  May face scalability challenges due to computational demands but is robust across diverse tasks.  Easier to scale in terms of computational demands, suitable for projects with limited resources. 
Advantages  Flexible handling of diverse feedback types; suitable for detailed output shaping and complex tasks.  Simplified and rapid fine-tuning process; directly incorporates human preferences with fewer computational resources. 
Disadvantages  Complex setup and higher computational costs; quality and diversity of feedback can affect outcomes.  May struggle with complex feedback beyond binary choices; gathering a large amount of annotated data could be challenging. 
Ideal Use Cases  Best for tasks requiring personalized or tailored outputs, such as conversational agents or context-rich content generation.  Well-suited for projects needing quick adjustments and closely aligned with human preferences, like sentiment analysis or binary decision systems. 

 

Summarizing key insights and applications

As we wrap up our journey through the comparative analysis of Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) for fine-tuning Large Language Models (LLMs), a few key insights stand out.

Both methods offer unique advantages and cater to different needs in the realm of AI development. Here’s a recap and some guidance on choosing the right approach for your project. 

Recap of fundamental takeaways

  • RLHF is a detailed, multi-step process that provides deep customization potential through the use of a reward model. It’s particularly suited for complex tasks where nuanced feedback is crucial. 
  • DPO simplifies the fine-tuning process by directly applying human preferences, offering a quicker and less resource-intensive path to model optimization. 

Choosing the right finetuning method

The decision between RLHF and DPO should be guided by several factors: 

  • Task Complexity: If your project involves complex interactions or requires understanding nuanced human feedback, RLHF might be the better choice. For more straightforward tasks or when quick adjustments are needed, DPO could be more effective. 
  • Available Resources: Consider your computational resources and the availability of human annotators. DPO is generally less demanding in terms of computational power and can be more straightforward in gathering the necessary data. 
  • Desired Control Level: RLHF offers more granular control over the fine-tuning process, while DPO provides a direct route to aligning model outputs with user preferences. Evaluate how much control and precision you need in the fine-tuning process.

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

The future of finetuning LLMs

Looking ahead, the field of LLM fine-tuning is ripe for innovation. We can anticipate advancements that further streamline these processes, reduce computational demands, and enhance the ability to capture and apply complex human feedback.

Additionally, the integration of AI ethics into fine-tuning methods is becoming increasingly important, ensuring that models not only perform well but also operate fairly and without bias. As we continue to push the boundaries of what AI can achieve, the evolution of fine-tuning methods like RLHF and DPO will play a crucial role in making AI more adaptable, efficient, and aligned with human values.

By carefully considering the specific needs of each project and staying informed about advancements in the field, developers can leverage these powerful tools to create AI systems that are not only technologically advanced but also deeply attuned to the complexities of human communication and preferences.

avatar-180x180
Moneebah Noman
| March 20

This is the second blog in the series of RAG and finetuning, highlighting a detailed comparison of the two approaches.

 

You can read the first blog of the series here – A guide to understanding RAG and finetuning

 

While we provided a detailed guideline on understanding RAG and finetuning, a comparative analysis of the two provides a deeper insight. Let’s explore and address the RAG vs finetuning debate to determine the best tool to optimize LLM performance.

 

RAG vs finetuning LLM – A detailed comparison of the techniques

It’s crucial to grasp that these methodologies while targeting the enhancement of large language models (LLMs), operate under distinct paradigms. Recognizing their strengths and limitations is essential for effectively leveraging them in various AI applications.

This understanding allows developers and researchers to make informed decisions about which technique to employ based on the specific needs of their projects. Whether it’s adapting to dynamic information, customizing linguistic styles, managing data requirements, or ensuring domain-specific performance, each approach has its unique advantages.

By comprehensively understanding these differences, you’ll be equipped to choose the most suitable method—or a blend of both—to achieve your objectives in developing sophisticated, responsive, and accurate AI models.

 

Summarizing the RAG vs finetuning comparison
Summarizing the RAG vs finetuning comparison

 

Team RAG or team Fine-Tuning? Tune in to this podcast now to find out their specific benefits, trade-offs, use-cases, enterprise adoption, and more!

Adaptability to dynamic information

RAG shines in environments where information is constantly updated. By design, RAG leverages external data sources to fetch the latest information, making it inherently adaptable to changes.

This quality ensures that responses generated by RAG-powered models remain accurate and relevant, a crucial advantage for applications like real-time news summarization or updating factual content.

Fine-tuning, in contrast, optimizes a model’s performance for specific tasks through targeted training on a curated dataset.

While it significantly enhances the model’s expertise in the chosen domain, its adaptability to new or evolving information is constrained. The model’s knowledge remains as current as its last training session, necessitating regular updates to maintain accuracy in rapidly changing fields.

 

Customization and linguistic style

RAG‘s primary focus is on enriching responses with accurate, up-to-date information retrieved from external databases.

This process, though excellent for fact-based accuracy, means RAG models might not tailor their linguistic style as closely to specific user preferences or nuanced domain-specific terminologies without integrating additional customization techniques.

Fine-tuning excels in personalizing the model to a high degree, allowing it to mimic specific linguistic styles, adhere to unique domain terminologies, and align with particular content tones.

This is achieved by training the model on a dataset meticulously prepared to reflect the desired characteristics, enabling the fine-tuned model to produce outputs that closely match the specified requirements.

 

Large language model bootcamp

Data efficiency and requirements

RAG operates by leveraging external datasets for retrieval, thus requiring a sophisticated setup to manage and query these vast data repositories efficiently.

The model’s effectiveness is directly tied to the quality and breadth of its connected databases, demanding rigorous data management but not necessarily a large volume of labeled training data.

Fine-tuning, however, depends on a substantial, well-curated dataset specific to the task at hand.

It requires less external data infrastructure compared to RAG but relies heavily on the availability of high-quality, domain-specific training data. This makes fine-tuning particularly effective in scenarios where detailed, task-specific performance is paramount and suitable training data is accessible.

 

Efficiency and scalability

RAG is generally considered cost-effective and efficient for a wide range of applications, particularly because it can dynamically access and utilize information from external sources without the need for continuous retraining.

This efficiency makes RAG a scalable solution for applications requiring access to the latest information or coverage across diverse topics.

Fine-tuning demands a significant investment in time and resources for the initial training phase, especially in preparing the domain-specific dataset and computational costs.

However, once fine-tuned, the model can operate with high efficiency within its specialized domain. The scalability of fine-tuning is more nuanced, as extending the model’s expertise to new domains requires additional rounds of fine-tuning with respective datasets.

 

Explore further how to tune LLMs for optimal performance

 

Domain-specific performance

RAG demonstrates exceptional versatility in handling queries across a wide range of domains by fetching relevant information from its external databases.

Its performance is notably robust in scenarios where access to wide-ranging or continuously updated information is critical for generating accurate responses.

Fine-tuning is the go-to approach for achieving unparalleled depth and precision within a specific domain.

By intensively training the model on targeted datasets, fine-tuning ensures the model’s outputs are not only accurate but deeply aligned with the domain’s subtleties, making it ideal for specialized applications requiring high expertise.

 

Hybrid approach: Enhancing LLMs with RAG and finetuning

The concept of a hybrid model that integrates Retrieval-Augmented Generation (RAG) with fine-tuning presents an interesting advancement. This approach allows for the contextual enrichment of LLM responses with up-to-date information while ensuring that outputs are tailored to the nuanced requirements of specific tasks.

Such a model can operate flexibly, serving as either a versatile, all-encompassing system or as an ensemble of specialized models, each optimized for particular use cases.

In practical applications, this could range from customer service chatbots that pull the latest policy details to enrich responses and then tailor these responses to individual user queries, to medical research assistants that retrieve the latest clinical data for accurate information dissemination, adjusted for layman understanding.

The hybrid model thus promises not only improved accuracy by grounding responses in factual, relevant data but also ensures that these responses are closely aligned with specific domain languages and terminologies.

However, this integration introduces complexities in model management, potentially higher computational demands, and the need for effective data strategies to harness the full benefits of both RAG and fine-tuning.

Despite these challenges, the hybrid approach marks a significant step forward in AI, offering models that combine broad knowledge access with deep domain expertise, paving the way for more sophisticated and adaptable AI solutions.

 

Choosing the best approach: Finetuning, RAG, or hybrid

Choosing between fine-tuning, Retrieval-Augmented Generation (RAG), or a hybrid approach for enhancing a Large Language Model should consider specific project needs, data accessibility,  and the desired outcome alongside computational resources and scalability.

Fine-tuning is best when you have extensive domain-specific data and seek to tailor the LLM’s outputs closely to specific requirements, making it a perfect fit for projects like creating specialized educational content that adapts to curriculum changes. RAG, with its dynamic retrieval capability, suits scenarios where responses must be informed by the latest information, ideal for financial analysis tools that rely on current market data.

A hybrid approach merges these advantages, offering the specificity of fine-tuning with the contextual awareness of RAG, suitable for enterprises needing to keep pace with rapid information changes while maintaining deep domain relevance. As technology evolves, a hybrid model might offer the flexibility to adapt, providing a comprehensive solution that encompasses the strengths of both fine-tuning and RAG.

 

Evolution and future directions

As the landscape of artificial intelligence continues to evolve, so too do the methodologies and technologies at its core. Among these, Retrieval-Augmented Generation (RAG) and fine-tuning are experiencing significant advancements, propelling them toward new horizons of AI capabilities.

 

Advanced enhancements in RAG

Enhancing the retrieval-augmented generation pipeline

RAG has undergone significant transformations and advancements in each step of its pipeline. Each research paper on RAG introduces advanced methods to boost accuracy and relevance at every stage.

Let’s use the same query example from the basic RAG explanation: “What’s the latest breakthrough in renewable energy?”, to better understand these advanced techniques.

  • Pre-retrieval optimizations: Before the system begins to search, it optimizes the query for better outcomes. For our example, Query Transformations and Routing might break down the query into sub-queries like “latest renewable energy breakthroughs” and “new technology in renewable energy.” This ensures the search mechanism is fine-tuned to retrieve the most accurate and relevant information.

 

  • Enhanced retrieval techniques: During the retrieval phase, Hybrid Search combines keyword and semantic searches, ensuring a comprehensive scan for information related to our query. Moreover, by Chunking and Vectorization, the system breaks down extensive documents into digestible pieces, which are then vectorized. This means our query doesn’t just pull up general information but seeks out the precise segments of texts discussing recent innovations in renewable energy.

 

  • Post-retrieval refinements: After retrieval, Reranking and Filtering processes evaluate the gathered information chunks. Instead of simply using the top ‘k’ matches, these techniques rigorously assess the relevance of each piece of retrieved data. For our query, this could mean prioritizing a segment discussing a groundbreaking solar panel efficiency breakthrough over a more generic update on solar energy. This step ensures that the information used in generating the response directly answers the query with the most relevant and recent breakthroughs in renewable energy.

 

Through these advanced RAG enhancements, the system not only finds and utilizes information more effectively but also ensures that the final response to the query about renewable energy breakthroughs is as accurate, relevant, and up-to-date as possible.

Towards multimodal integration

RAG, traditionally focused on enhancing text-based language models by incorporating external data, is now also expanding its horizons towards a multimodal future.

Multimodal RAG integrates various types of data, such as images, audio, and video, alongside text, allowing AI models to generate responses that are not only informed by a vast array of textual information but also enriched by visual and auditory contexts.

This evolution signifies a move towards AI systems capable of understanding and interacting with the world more holistically, mimicking human-like comprehension across different sensory inputs.

 

Here’s your fundamental introduction to RAG

 

Advanced enhancements in finetuning

Parameter efficiency and LoRA

In parallel, fine-tuning is transforming more parameter-efficient methods. Fine-tuning large language models (LLMs) presents a unique challenge for AI practitioners aiming to adapt these models to specific tasks without the overwhelming computational costs typically involved.

One such innovative technique is Parameter-Efficient Fine-Tuning (PEFT), which offers a cost-effective and efficient method for fine-tuning such a model.

Techniques like Low-Rank Adaptation (LoRA) are at the forefront of this change, enabling fine-tuning to be accomplished with significantly less computational overhead. LoRA and similar approaches adjust only a small subset of the model’s parameters, making fine-tuning not only more accessible but also more sustainable.

Specifically, it introduces a low-dimensional matrix that captures the essence of the downstream task, allowing for fine-tuning with minimal adjustments to the original model’s weights.

This method exemplifies how cutting-edge research is making it feasible to tailor LLMs for specialized applications without the prohibitive computational cost typically associated.

 

The emergence of long-context LLMs

 

The evolution toward long context LLMs
The evolution toward long context LLMs – Source: Google Blog

 

As we embrace these advancements in RAG and fine-tuning, the recent introduction of Long Context LLMs, like Gemini 1.5 Pro, poses an intriguing question about the future necessity of these technologies. Gemini 1.5 Pro, for instance, showcases a remarkable capability with its 1 million token context window, setting a new standard for AI’s ability to process and utilize extensive amounts of information in one go.

The big deal here is how this changes the game for technologies like RAG and advanced fine-tuning. RAG was a breakthrough because it helped AI models to look beyond their training, fetching information from outside when needed, to answer questions more accurately. But now, with Long Context LLMs’ ability to hold so much information in memory, the question arises: Do we still need RAG anymore?

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

This doesn’t mean RAG and fine-tuning are becoming obsolete. Instead, it hints at an exciting future where AI can be both deeply knowledgeable, thanks to its vast memory, and incredibly adaptable, using technologies like RAG to fill in any gaps with the most current information.

In essence, Long Context LLMs could make AI more powerful by ensuring it has a broad base of knowledge to draw from, while RAG and fine-tuning techniques ensure that the AI remains up-to-date and precise in its answers. So the emergence of Long Context LLMs like Gemini 1.5 Pro does not diminish the value of RAG and fine-tuning but rather complements it.

 

 

Concluding Thoughts

The trajectory of AI, through the advancements in RAG, fine-tuning, and the emergence of long-context LLMs, reveals a future rich with potential. As these technologies mature, their combined interaction will make systems more adaptable, efficient, and capable of understanding and interacting with the world in ways that are increasingly nuanced and human-like.

The evolution of AI is not just a testament to technological advancement but a reflection of our continuous quest to create machines that can truly understand, learn from, and respond to the complex landscape of human knowledge and experience.

Huda Mahmood - Author
Huda Mahmood
| March 19

Vector embeddings have revolutionized the representation and processing of data for generative AI applications. The versatility of embedding tools has produced enhanced data analytics for its use cases.

In this blog, we will explore Google’s recent development of specialized embedding tools that particularly focus on promoting research in the fields of dermatology and pathology.

Let’s start our exploration with an overview of vector embedding tools.

What are vector embedding tools?

Vector embeddings are a specific embedding tool that uses vectors for data representation. While the direction of a vector determines its relationship with other data points in space, the length of a vector signifies the importance of the data point it represents.

A vector embedding tool processes input data by analyzing it and identifying key features of interest. The tool then assigns a unique vector to any data point based on its features. These are a powerful tool for the representation of complex datasets, allowing more efficient and faster data processing.

 

Large language model bootcamp

 

General embedding tools process a wide variety of data, capturing general features without focusing on specialized fields of interest. On the contrary, there are specialized embedding tools that enable focused and targeted data handling within a specific field of interest.

Specialized embedding tools are particularly useful in fields like finance and healthcare where unique datasets form the basis of information. Google has shared two specialized vector embedding tools, dealing with the demands of healthcare data processing.

However, before we delve into the details of these tools, it is important to understand their need in the field of medicine.

Why does healthcare need specialized embedding tools?

Embeddings are an important tool that enables ML engineers to develop apps that can handle multimodal data efficiently. These AI-powered applications using vector embeddings encompass various industries. While they deal with a diverse range of uses, some use cases require differentiated data-processing systems.

Healthcare is one such type of industry where specialized embedding tools can be useful for the efficient processing of data. Let’s explore major reasons for such differentiated use of embedding tools.

 

Explore the role of vector embeddings in generative AI

 

Domain-specific features

Medical data, ranging from patient history to imaging results, are crucial for diagnosis. These data sources, particularly from the field of dermatology and pathology, provide important information to medical personnel.

The slight variation of information in these sources requires specialized knowledge for the identification of relevant information patterns and changes. While regular embedding tools might fail at identifying the variations between normal and abnormal information, specialized tools can be created with proper training and contextual knowledge.

Data scarcity

While data is abundant in different fields and industries, healthcare information is often scarce. Hence, specialized embedding tools are needed to train on the small datasets with focused learning of relevant features, leading to enhanced performance in the field.

Focused and efficient data processing

The AI model must be trained to interpret particular features of interest from a typical medical image. This demands specialized tools that can focus on relevant aspects of a particular disease, assisting doctors in making accurate diagnoses for their patients.

In essence, specialized embedding tools bridge the gap between the vast amount of information within medical images and the need for accurate, interpretable diagnoses specific to each field in healthcare.

A look into Google’s embedding tools for healthcare research

The health-specific embedding tools by Google are focused on enhancing medical image analysis, particularly within the field of dermatology and pathology. This is a step towards addressing the challenge of developing ML models for medical imaging.

The two embedding tools – Derm Foundation and Path Foundation – are available for research use to explore their impact on the field of medicine and study their role in improving medical image analysis. Let’s take a look at their specific uses in the medical world.

Derm Foundation: A step towards redefining dermatology

It is a specialized embedding tool designed by Google, particularly for the field of dermatology within the world of medicine. It specifically focuses on generating embeddings from skin images, capturing the critical skin features that are relevant to diagnosing a skin condition.

The pre-training process of this specialized embedding tool consists of learning from a library of labeled skin images with detailed descriptions, such as diagnoses and clinical notes. The tool learns to identify relevant features for skin condition classification from the provided information, using it on future data to highlight similar features.

 

Derm Foundation outperforms BiT-M (a standard pre-trained image model)
Derm Foundation outperforms BiT-M (a standard pre-trained image model) – Source: Google Research Blog

 

Some common features of interest for derm foundation when analyzing a typical skin image include:

  • Skin color variation: to identify any abnormal pigmentation or discoloration of the skin
  • Textural analysis: to identify and differentiate between smooth, rough, or scaly textures, indicative of different skin conditions
  • Pattern recognition: to highlight any moles, rashes, or lesions that can connect to potential abnormalities

Potential use cases of the Derm Foundation

Based on the pre-training dataset and focus on analyzing skin-specific features, Derm Foundation embeddings have the potential to redefine the data-processing and diagnosing practices for dermatology. Researchers can use this tool to develop efficient ML models. Some leading potential use cases for these models include:

Early detection of skin cancer

Efficient identification of skin patterns and textures from images can enable dermatologists to timely detect skin cancer in patients. Early detection can lead to better treatments and outcomes overall.

Improved classification of skin diseases

Each skin condition, such as dermatitis, eczema, and psoriasis, shows up differently on a medical image. A specialized embedding tool empowers the models to efficiently detect and differentiate between different skin conditions, leading to accurate diagnoses and treatment plans.

Hence, the Derm Foundation offers enhanced accuracy in dermatological diagnoses, faster deployment of models due to the use of pre-trained embeddings, and focused analysis by dealing with relevant features. It is a step towards a more accurate and efficient diagnosis of skin conditions, ultimately improving patient care.

 

Here’s your guide to choosing the right vector embedding model for your generative AI use case

 

Path Foundation: Revamping the world of pathology in medical sciences

While the Derm Foundation was specialized to study and analyze skin images, the Path Foundation embedding is designed to focus on images from pathology.

 

An outlook of SSL training used by Path Foundation
An outlook of SSL training used by Path Foundation – Source: Google Research Blog

 

It analyzes the visual data of tissue samples, focusing on critical features that can include:

  • Cellular structures: focusing on cell size, shape, or arrangement to identify any possible diseases
  • Tumor classification: differentiating between different types of tumors or assessing their aggressiveness

The pre-training process of the Path Foundation embedding comprises of labeled pathology images along with detailed descriptions and diagnoses relevant to them.

 

Learn to build LLM applications

 

Potential use cases of the Path Foundation

Using the training dataset empowers the specialized embedding tool for efficient diagnoses in pathology. Some potential use cases within the field for this embedding tool include:

Improved cancer diagnosis

Improved analysis of pathology images can lead to timely detection of cancerous tissues. It will lead to earlier diagnoses and better patient outcomes.

Better pathology workflows

Analysis of pathology images is a time-consuming process that can be expedited with the use of an embedding tool. It will allow doctors to spend more time on complex cases while maintaining an improved workflow for their pathology diagnoses.

Thus, Path Foundation promises the development of pathology processes, supporting medical personnel in improved diagnoses and other medical processes.

Transforming healthcare with vector embedding tools

The use of embedding tools like Derm Foundation and Path Foundation has the potential to redefine data handling for medical processes. Specialized focus on relevant features offers enhanced diagnostic accuracy with efficient processes and workflows.

Moreover, the development of specialized ML models will address data scarcity often faced within healthcare when developing such solutions. It will also promote faster development of useful models and AI-powered solutions.

While the solutions will empower doctors to make faster and more accurate diagnoses, they will also personalize medicine for patients. Hence, embedding tools have the potential to significantly improve healthcare processes and treatments in the days to come.

avatar-180x180
Moneebah Noman
| March 18

This is the first blog in the series of RAG and finetuning, focusing on providing a better understanding of the two approaches.

RAG and finetuning: You’ve likely seen these terms tossed around on social media, hailed as the next big leap in artificial intelligence. But what do they really mean, and why are they so crucial in the evolution of AI? 

To truly understand their significance, it’s essential to recognize the practical challenges faced by current language models, such as ChatGPT, renowned for their ability to mimic human-like text across essays, dialogues, and even poetry.

Yet, despite these impressive capabilities, their limitations became more apparent when tasked with providing up-to-date information on global events or expert knowledge in specialized fields.

Take, for instance, the FIFA World Cup.

 

Fifa World Cup Winner-Messi
Messi’s winning shot at the Fifa World Cup – Source: Economic Times

 

If you were to ask ChatGPT, “Who won the FIFA World Cup?” expecting details on the most recent tournament, you might receive an outdated response citing France as the champions despite Argentina’s triumphant victory in Qatar 2022.

 

ChatGPT's response to an inquiry of the winner of FIFA World Cup 2022
ChatGPT’s response to an inquiry about the winner of the FIFA World Cup 2022

 

Moreover, the limitations of AI models extend beyond current events to specialized knowledge domains. Try asking ChatGPT for treatments in neurodegenerative diseases, a highly specialized medical field. The model might offer generic advice based on its training data but lacks depth or specificity – and, most importantly, accuracy.

 

Symptoms of Parkinson's disease
Symptoms of Parkinson’s disease – Source: Neuro2go

 

GPT's response to inquiry about Parkinson's disease
GPT’s response to inquiry about Parkinson’s disease

 

These scenarios precisely illustrate the problem: a language model might generate text relevant to a past context or data but falls short when current or specialized knowledge is required.

 

Revisit the best large language models of 2023

 

Enter RAG and finetuning

RAG revolutionizes the way language models access and use information. Incorporating a retrieval step allows these models to pull in data from external sources in real-time. This means that when you ask a RAG-powered model a question, it doesn’t just rely on what it learned during training; instead, it can consult a vast, constantly updated external database to provide an accurate and relevant answer. This would bridge the gap highlighted by the FIFA World Cup example.

On the other hand, fine-tuning offers a way to specialize a general AI model for specific tasks or knowledge domains. Additional training on a focused dataset sharpens the model’s expertise in a particular area, enabling it to perform with greater precision and understanding.

This process transforms a jack-of-all-trades into a master of one, equipping it with the nuanced understanding required for tasks where generic responses just won’t cut it. This would allow it to perform as a seasoned medical specialist dissecting a complex case rather than a chatbot giving general guidelines to follow.

 

Curious about the LLM context augmentation approaches like RAG and fine-tuning and their benefits, trade-offs and use-cases? Tune in to this podcast with Co-founder and CEO of LlamaIndex now!


This blog will walk you through RAG and finetuning, unraveling how they work, why they matter, and how they’re applied to solve real-world problems. By the end, you’ll not only grasp the technical nuances of these methodologies but also appreciate their potential to transform AI systems, making them more dynamic, accurate, and context-aware.

 

Large language model bootcamp

 

Understanding the RAG LLM duo

What is RAG?

Retrieval-augmented generation (RAG) significantly enhances how AI language models respond by incorporating a wealth of updated and external information into their answers. It could be considered a model consulting an extensive digital library for information as needed.

Its essence is in the name:  Retrieval, Augmentation, and Generation.

Retrieval

The process starts when a user asks a query, and the model needs to find information beyond its training data. It searches through a vast database that is loaded with the latest information, looking for data related to the user’s query.

Augmentation

Next, the information retrieved is combined, or ‘augmented,’ with the original query. This enriched input provides a broader context, helping the model understand the query in greater depth.

Generation

Finally, the language model generates a response based on the augmented prompt. This response is informed by the model’s training and the newly retrieved information, ensuring accuracy and relevance.

 

Why use RAG?

Retrieval-augmented generation (RAG) brings an approach to natural language processing that’s both smart and efficient. It solved many problems faced by current LLMs, and that’s why it’s the most talked about technique in the NLP space.

Always up-to-date

RAG keeps answers fresh by accessing the latest information. RAG ensures the AI’s responses are current and correct in fields where facts and data change rapidly.

Sticks to the facts

Unlike other models that might guess or make up details (a ” hallucinations ” problem), RAG checks facts by referencing real data. This makes it reliable, giving you answers based on actual information.

Flexible and versatile

RAG is adaptable, working well across various settings, from chatbots to educational tools and more. It meets the need for accurate, context-aware responses in a wide range of uses, and that’s why it’s rapidly being adapted in all domains.

 

Explore the power of the RAG LLM duo for enhanced performance

 

Exploring the RAG pipeline

To understand RAG further, consider when you interact with an AI model by asking a question like “What’s the latest breakthrough in renewable energy?”. This is when the RAG system springs into action. Let’s walk through the actual process.

 

A visual representation of a RAG pipeline
A visual representation of an RAG pipeline

 

Query initiation and vectorization

  • Your query starts as a simple string of text. However, computers, particularly AI models, don’t understand text and its underlying meanings the same way humans do. To bridge this gap, the RAG system converts your question into an embedding, also known as a vector.
  • Why a vector, you might ask? Well, A vector is essentially a numerical representation of your query, capturing not just the words but the meaning behind them. This allows the system to search for answers based on concepts and ideas, not just matching keywords.

 

Searching the vector database

  • With your query now in vector form, the RAG system seeks answers in an up-to-date vector database. The system looks for the vectors in this database that are closest to your query’s vector—the semantically similar ones, meaning they share the same underlying concepts or topics.

 

  • But what exactly is a vector database? 
    • Vector databases defined: A vector database stores vast amounts of information from diverse sources, such as the latest research papers, news articles, and scientific discoveries. However, it doesn’t store this information in traditional formats (like tables or text documents). Instead, each piece of data is converted into a vector during the ingestion process.
    • Why vectors?: This conversion to vectors allows the database to represent the data’s meaning and context numerically or into a language the computer can understand and comprehend deeply, beyond surface-level keywords.
    • Indexing: Once information is vectorized, it’s indexed within the database. Indexing organizes the data for rapid retrieval, much like an index in a textbook, enabling you to find the information you need quickly. This process ensures that the system can efficiently locate the most relevant information vectors when it searches for matches to your query vector.

 

  • The key here is that this information is external and not originally part of the language model’s training data, enabling the AI to access and provide answers based on the latest knowledge.

 

Selecting the top ‘k’ responses

  • From this search, the system selects the top few matches—let’s say the top 5. These matches are essentially pieces of information that best align with the essence of your question.
  • By concentrating on the top matches, the RAG system ensures that the augmentation enriches your query with the most relevant and informative content, avoiding information overload and maintaining the response’s relevance and clarity.

 

Augmenting the query

  • Next, the information from these top matches is used to augment the original query you asked the LLM. This doesn’t mean the system simply piles on data. Instead, it integrates key insights from these top matches to enrich the context for generating a response. This step is crucial because it ensures the model has a broader, more informed base from which to draw when crafting its answer.

 

Generating the response

  • Now comes the final step: generating a response. With the augmented query, the model is ready to reply. It doesn’t just output the retrieved information verbatim. Instead, it synthesizes the enriched data into a coherent, natural-language answer. For your renewable energy question, the model might generate a summary highlighting the most recent and impactful breakthrough, perhaps detailing a new solar panel technology that significantly increases power output. This answer is informative, up-to-date, and directly relevant to your query.

 

Learn to build LLM applications

 

Understanding fine-tuning

What is fine-tuning?

Fine-tuning could be likened to sculpting, where a model is precisely refined, like shaping marble into a distinct figure. Initially, a model is broadly trained on a diverse dataset to understand general patterns—this is known as pre-training. Think of pre-training as laying a foundation; it equips the model with a wide range of knowledge.

Fine-tuning, then, adjusts this pre-trained model and its weights to excel in a particular task by training it further on a more focused dataset related to that specific task. From training on vast text corpora, pre-trained LLMs, such as GPT or BERT, have a broad understanding of language.

Fine-tuning adjusts these models to excel in targeted applications, from sentiment analysis to specialized conversational agents.

 

Why fine-tune?

The breadth of knowledge LLMs acquire through initial training is impressive but often lacks the depth or specificity required for certain tasks. Fine-tuning addresses this by adapting the model to the nuances of a specific domain or function, enhancing its performance significantly on that task without the need to train a new model from scratch.

 

The fine-tuning process

Fine-tuning involves several key steps, each critical to customizing the model effectively. The process aims to methodically train the model, guiding its weights toward the ideal configuration for executing a specific task with precision.

 

A look at the finetuning process
A look at the finetuning process

 

Selecting a task

Identify the specific task you wish your model to perform better on. The task could range from classifying emails into spam or not spam to generating medical reports from patient notes.

 

Choosing the right pre-trained model

The foundation of fine-tuning begins with selecting an appropriate pre-trained large language model (LLM) such as GPT or BERT. These models have been extensively trained on large, diverse datasets, giving them a broad understanding of language patterns and general knowledge.

The choice of model is critical because its pre-trained knowledge forms the basis for the subsequent fine-tuning process. For tasks requiring specialized knowledge, like medical diagnostics or legal analysis, choose a model known for its depth and breadth of language comprehension.

 

Preparing the specialized dataset

For fine-tuning to be effective, the dataset must be closely aligned with the specific task or domain of interest. This dataset should consist of examples representative of the problem you aim to solve. For a medical LLM, this would mean assembling a dataset comprised of medical journals, patient notes, or other relevant medical texts.

The key here is to provide the model with various examples it can learn from. This data must represent the types of inputs and desired outputs you expect once the model is deployed.

 

Reprocess the data

Before your LLM can start learning from this task-specific data, the data must be processed into a format the model understands. This could involve tokenizing the text, converting categorical labels into numerical format, and normalizing or scaling input features.

At this stage, data quality is crucial; thus, you’ll look out for inconsistencies, duplicates, and outliers, which can skew the learning process, and fix them to ensure cleaner, more reliable data.

After preparing this dataset, you divide it into training, validation, and test sets. This strategic division ensures that your model learns from the training set, tweaks its performance based on the validation set, and is ultimately assessed for its ability to generalize from the test set.

 

Read more about Finetuning LLMs

 

Adapting the model for the specific task

Once the pre-trained model and dataset are ready, you must better tailor the model to suit your specific task. An LLM comprises multiple neural network layers, each learning different aspects of the data.

During fine-tuning, not every layer is tweaked—some represent foundational knowledge that applies broadly. In contrast, the top or later layers are more plastic and customized to align with the specific nuances of the task. The architecture requires two key adjustments:

  • Layer freezing: To preserve the general knowledge the model has gained during pre-training, freeze most of its layers, especially the lower ones closer to the input. This ensures the model retains its broad understanding while you fine-tune the upper layers to be more adaptable to the new task.
  • Output layer modification: Replace the model’s original output layer with a new one tailored to the number of categories or outputs your task requires. This involves configuring the output layer to classify various medical conditions accurately for a medical diagnostic task.

 

Fine-tuning hyperparameters

With the model’s architecture now adjusted, we turn your attention to hyperparameters. Hyperparameters are the settings and configurations that are crucial for controlling the training process. They are not learned from the data but are set before training begins and significantly impact model performance. Key hyperparameters in fine-tuning include:

  • Learning rate: Perhaps the most critical hyperparameter in fine-tuning. A lower learning rate ensures that the model’s weights are adjusted gradually, preventing it from “forgetting” its pre-trained knowledge.
  • Batch size:  The number of training examples used in one iteration. It affects the model’s learning speed and memory usage.
  • Epochs: The number of times the entire dataset is passed through the model. Enough epochs are necessary for learning, but too many can lead to overfitting.

 

Training process

With the dataset prepared, the model was adapted, and the hyperparameters were set, so the model is now ready to be fine-tuned.

The training process involves repeatedly passing your specialized dataset through the model, allowing it to learn from the task-specific examples, it involves adjusting the model’s internal parameters, the weights, and biases of those fine-tuned layers so the output predictions get as close to the desired outcomes as possible.

This is done in iterations (epochs), and thanks to the pre-trained nature of the model, it requires fewer epochs than training from scratch.  Here is what happens in each iteration:

  • Forward pass: The model processes the input data, making predictions based on its current state.
  • Loss calculation: The difference between the model’s predictions and the actual desired outputs (labels) is calculated using a loss function. This function quantifies how well the model is performing.
  • Backward pass (Backpropagation): The gradients of the loss for each parameter (weight) in the model are computed. This indicates how the changes being made to the weights are affecting the loss. 
  • Update weights: Apply an optimization algorithm to update the model’s weights, focusing on those in unfrozen layers. This step is where the model learns from the task-specific data, refining its predictions to become more accurate.

A tight feedback loop where you incessantly monitor the model’s validation performance guides you in preventing overfitting and determining when the model has learned enough. It gives you an indication of when to stop the training.

 

Evaluation and iteration

After fine-tuning, assess the model’s performance on a separate validation dataset. This helps gauge how well the model generalizes to new data. You do this by running the model against the test set—data it hadn’t seen during training.

Here, you look at metrics appropriate to the task, like BLEU and ROUGE for translation or summarization, or even qualitative evaluations by human judges, ensuring the model is ready for real-life application and isn’t just regurgitating memorized examples.

If the model’s performance is not up to par, you may need to revisit the hyperparameters, adjust the training data, or further tweak the model’s architecture.

 

For medical LLM applications, it is this entire process that enables the model to grasp medical terminologies, understand patient queries, and even assist in diagnosing from text descriptions—tasks that require deep domain knowledge.

 

You can read the second part of the blog series here – RAG vs finetuning: Which is the best tool?

 

Key takeaways

Hence, this provides a comprehensive introduction to RAG and fine-tuning, highlighting their roles in advancing the capabilities of large language models (LLMs). Some key points to take away from this discussion can be put down as:

  • LLMs struggle with providing up-to-date information and excelling in specialized domains.
  • RAG addresses these limitations by incorporating external information retrieval during response generation, ensuring informative and relevant answers.
  • Fine-tuning refines pre-trained LLMs for specific tasks, enhancing their expertise and performance in those areas.
Huda Mahmood - Author
Huda Mahmood
| March 13

You need the right tools to fully unleash the power of generative AI. A vector embedding model is one such tool that is a critical component of AI applications for creating realistic text, images, and more.

In this blog, we will explore vector embedding models and the various parameters to be on the lookout for when choosing an appropriate model for your AI applications.

 

What are vector embedding models?

 

vector embedding models
Function of a vector embedding model

 

These act as data translators that can convert any data into a numerical code, specifically a vector of numbers. The model operates to create vectors that capture the meaning and semantic similarity between data objects. It results in the creation of a map that can be used to study data connections.

Moreover, the embedding models allow better control over the content and style of generated outputs, while dealing with multimodal data. Hence, it can deal with text, images, code, and other forms of data.

While we understand the role and importance of embedding models in the world of vector databases, the selection of right model is crucial for the success of an AI application. Let’s dig deeper into the details of making the relevant choice.

 

Read more about embeddings as a building block for LLMs

 

Factors of consideration to make the right choice

Since a vector embedding model forms the basis of your generative AI application, your choice is crucial for its success.

 

Factors to consider when choosing a vector embedding model
Factors to consider when choosing a vector embedding model

 

Below are some key factors to consider when exploring your model options.

 

Use case and desired outcomes

In any choice, your goals and objectives are the most important aspect. The same holds true for your embedding model selection. The use case and outcomes of your generative AI application guide your choice of model.

The type of task you want your app to perform is a crucial factor as different models capture specific aspects of data. The tasks can range from text generation and summarization to code completion and more. You must be clear about your goal before you explore the available options.

Moreover, data characteristics are of equal importance. Your data type – text, code, or image – must be compatible with your data format.

 

Model characteristics

The particular model characteristics of consideration include its accuracy, latency, and scalability. Accuracy refers to the ability of the model to correctly capture data relationships, including semantic meaning, word order, and linguistic nuances.

Latency is another important property which caters to real-time interactions of the application, improving model’s performance with reduced inference time. The size and complexity of data can impact this characteristic of an embedding model.

Moreover, to keep up with the rapidly advancing AI, it is important to choose a model that supports scalability. It also ensures that the model can cater to your growing dataset needs.

 

Large language model bootcamp

Practical factors

While app requirements and goals are crucial to your model choice, several practical aspects of the decision must also be considered. These primarily include computational resource requirements and cost of the model. While the former must match your data complexity, the latter should be within your specified budget.

Moreover, the available level of technical expertise also dictates your model choice. Since some vector embedding models require high technical expertise while others are more user-friendly, your strength of technical knowledge will determine your ease-of-use.

 

Here’s your guide to top vector databases in the market

 

While these considerations address the various aspects of your organization-level goals and application requirements, you must consider some additional benchmarks and evaluation factors. Considering these benchmarks completes the highly important multifaceted approach of model selection.

 

Benchmarks for evaluating vector embedding models

Here’s a breakdown of some key benchmarks you can leverage:

 

Internal evaluation

These benchmarks focus on the quality of the embeddings for all tasks. Some common metrics of this evaluation include semantic relationships between words, word similarity in the embedding space, and word clustering. All these metrics collectively determine the quality of connections between embeddings.

 

External evaluation

It keeps track of the performance of embeddings in a specific task. Follwoing is a list of some of the metrics used for external evaluation:

ROUGE Score: It is called the Recall-Oriented Understudy for Gisting Evaluation. It deals with the performance of text summarization tasks, evaluating the overlap between generated and reference summaries.

BLEU Score: The Bilingual Evaluation Understudy, also called human evaluation measures the coherence and quality of outputs. This metric is particularly useful to track the quality of dialog generation.

MRR: It stands for Mean Reciprocal Rank. As the name suggests, it ranks the documents in the retrieved results based on their relevance.

 

MRR explained
A visual explanation of MRR – Source: Evidently AI

 

Benchmark Suites

The benchmark suites work by providing a standardized set of tasks and datasets to assess the models’ performance. It helps in making informed decisions as they highlight the strengths and weaknesses of of each model across a variety of tasks. Some common benchmark suites include:

BEIR (Benchmark for Evaluating Retrieval with BERT)

It focuses on information retrieval tasks by using a reference set that includes diverse information retrieval tasks such as question-answering, fact-checking, and entity retrieval. It provides datasets for retrieving relevant documents or passages based on a query, allowing for a comprehensive evaluation of a model’s capabilities.

MTEB (Massive Text Embedding Benchmark)

 

Outlook of the MTEB
An outlook of the MTEB – Source: Hugging Face

 

The MTEB leaderboard is available on Hugging Face. It expands on BEIR’s foundation with 58 datasets and covering 112 languages. It enables evaluation of models against a wide range of linguistic contexts and use cases.

Its metrics and databases are suitable for tasks like text summarization, information retrieval, and semantic textual similarity, allowing you to see model performance on a broad range of tasks.

 

Learn to build LLM applications

 

Hence, the different factors, benchmark suites, evaluation models, and metrics collectively present a multi-faceted approach towards selecting a relevant vector embedding model. However, alongside these quantitative metrics, it is important to incorporate human judgment into the process.

 

 

The final word

In navigating the performance of your generative AI applications, the journey starts with choosing an appropriate vector embedding model. Since the model forms the basis of your app performance, you must consider all the relevant factors in making a decision.

While you explore the various evaluation metrics and benchmarks, you must also carefully analyze the instances of your application’s poor performance. It will help in understanding the embedding model’s weaknesses, enabling you to choose the most appropriate one that ensures high-quality outputs.

Huda Mahmood - Author
Huda Mahmood
| March 9

AI chatbots are transforming the digital world with increased efficiency, personalized interaction, and useful data insights. While Open AI’s GPT and Google’s Gemini are already transforming modern business interactions, Anthropic AI recently launched its newest addition, Claude 3.

This blog explores the latest developments in the world of AI with the launch of Claude 3 and discusses the relative position of Anthropic’s new AI tool to its competitors in the market.

Let’s begin by exploring the budding realm of Claude 3.

 

What is Claude 3?

It is the most recent advancement in large language models (LLMs) by Anthropic AI to its claude family of AI models. It is the latest version of the company’s AI chatbot with an enhanced ability to analyze and forecast data. The chatbot can understand complex questions and generate different creative text formats.

 

Read more about how LLMs make chatbots smarter

 

Among its many leading capabilities is its feature to understand and respond in multiple languages. Anthropic has emphasized responsible AI development with Claude 3, implementing measures to reduce related issues like bias propagation.

 

Introducing the members of the Claude 3 family

Since the nature of access and usability differs for people, the Claude 3 family comes with various options for the users to choose from. Each choice has its own functionality, varying in data-handling capabilities and performance.

The Claude 3 family consists of a series of three models called Haiku, Sonnet, and Opus.

 

Members of the Claude 3 family
Members of the Claude 3 family – Source: Anthropic

 

Let’s take a deeper look into each member and their specialties.

 

Haiku

It is the fastest and most cost-effective model of the family and is ideal for basic chat interactions. It is designed to provide swift responses and immediate actions to requests, making it a suitable choice for customer interactions, content moderation tasks, and inventory management.

However, while it can handle simple interactions speedily, it is limited in its capacity to handle data complexity. It falls short in generating creative texts or providing complex reasonings.

 

Sonnet

Sonnet provides the right balance between the speed of Haiku and the intelligence of Opus. It is a middle-ground model among this family of three with an improved capability to handle complex tasks. It is designed to particularly manage enterprise-level tasks.

Hence, it is ideal for data processing, like retrieval augmented generation (RAG) or searching vast amounts of organizational information. It is also useful for sales-related functions like product recommendations, forecasting, and targeted marketing.

Moreover, the Sonnet is a favorable tool for several time-saving tasks. Some common uses in this category include code generation and quality control.

 

Large language model bootcamp

 

Opus

Opus is the most intelligent member of the Claude 3 family. It is capable of handling complex tasks, open-ended prompts, and sight-unseen scenarios. Its advanced capabilities enable it to engage with complex data analytics and content generation tasks.

Hence, Opus is useful for R&D processes like hypothesis generation. It also supports strategic functions like advanced analysis of charts and graphs, financial documents, and market trends forecasting. The versatility of Opus makes it the most intelligent option among the family, but it comes at a higher cost.

 

Ultimately, the best choice depends on the specific required chatbot use. While Haiku is the best for a quick response in basic interactions, Sonnet is the way to go for slightly stronger data processing and content generation. However, for highly advanced performance and complex tasks, Opus remains the best choice among the three.

 

Among the competitors

While Anthropic’s Claude 3 is a step ahead in the realm of large language models (LLMs), it is not the first AI chatbot to flaunt its many functions. The stage for AI had already been set with ChatGPT and Gemini. Anthropic has, however, created its space among its competitors.

Let’s take a look at Claude 3’s position in the competition.

 

Claude-3-among-its-competitors-at-a-glance
Positioning Claude 3 among its competitors – Source: Anthropic

 

Performance Benchmarks

The chatbot performance benchmarks highlight the superiority of Claude 3 in multiple aspects. The Opus of the Claude 3 family has surpassed both GPT-4 and Gemini Ultra in industry benchmark tests. Anthropic’s AI chatbot outperformed its competitors in undergraduate-level knowledge, graduate-level reasoning, and basic mathematics.

Moreover, the Opus raises the benchmarks for coding, knowledge, and presenting a near-human experience. In all the mentioned aspects, Anthropic has taken the lead over its competition.

 

Comparing across multiple benchmarks
Comparing across multiple benchmarks – Source: Anthropic

For a deep dive into large language models, context windows, and content augmentation, watch this podcast now!

Data processing capacity

In terms of data processing, Claude 3 can consider much larger text at once when formulating a response, unlike the 64,000-word limit on GPT-4. Moreover, Opus from the Anthropic family can summarize up to 150,000 words while ChatGPT’s limit is around 3000 words for the same task.

It also possesses multimodal and multi-language data-handling capacity. When coupled with enhanced fluency and human-like comprehension, Anthropic’s Claude 3 offers better data processing capabilities than its competitors.

 

Learn to build LLM applications

Ethical considerations

The focus on ethics, data privacy, and safety makes Claude 3 stand out as a highly harmless model that goes the extra mile to eliminate bias and misinformation in its performance. It has an improved understanding of prompts and safety guardrails while exhibiting reduced bias in its responses.

 

Which AI chatbot to use?

Your choice relies on the purpose for which you need an AI chatbot. While each tool presents promising results, they outshine each other in different aspects. If you are looking for a factual understanding of language, Gemini is your go-to choice. ChatGPT, on the other hand, excels in creative text generation and diverse content creation.

However, striding in line with modern content generation requirements and privacy, Claude 3 has come forward as a strong choice. Alongside strong reasoning and creative capabilities, it offers multilingual data processing. Moreover, its emphasis on responsible AI development makes it the safest choice for your data.

To sum it up

Claude 3 emerges as a powerful LLM, boasting responsible AI, impressive data processing, and strong performance. While each chatbot excels in specific areas, Claude 3 shines with its safety features and multilingual capabilities. While access is limited now, Claude 3 holds promise for tasks requiring both accuracy and ingenuity. Whether it’s complex data analysis or crafting captivating poems, Claude 3 is a name to remember in the ever-evolving world of AI chatbots.

Huda Mahmood - Author
Huda Mahmood
| March 8

With the rapidly evolving technological world, businesses are constantly contemplating the debate of traditional vs vector databases. This blog delves into a detailed comparison between the two data management techniques.

In today’s digital world, businesses must make data-driven decisions to manage huge sets of information. Hence, databases are important for strategic data handling and enhanced operational efficiency.

However, before we dig deeper into the types of databases, let’s understand them better.

 

Understanding databases

Databases are a structured way to store and organize data effectively. It involves multiple data handling processes, like updating, deleting, or changing information. These are important for efficient data organization, security, and control.

Rules are put in place by databases to ensure data integrity and minimize redundancy. Moreover, organized storage of data facilitates data analysis, enabling retrieval of useful insights and data patterns. It also facilitates integration with different applications to enhance their functionality with organized access to data.

In data science, databases are important for data preprocessing, cleaning, and integration. Data scientists often rely on databases to perform complex queries and visualize data. Moreover, databases allow the storage of training datasets, facilitating model training and validation.

 

Read more about Understanding Databases

 

While databases are vital to data management, they have also developed over time. The changing technological world has led to a transition in available databases. Hence, the digital arena has gradually shifted from traditional to vector databases.

Since the shift is still underway, you can access both kinds of databases. However, it is important to understand the uses, limitations, and functions of both databases to understand which is more suitable for your organization. Let’s explore the arguments around the debate of traditional vs vector databases.

 

Large language model bootcamp

 

Exploring the traditional vs vector databases debate

In comparing the two categories of databases, we must explore a common set of factors to understand the basic differences between them. Hence, this blog will explore the debate from a few particular aspects, highlighting the characteristics of both traditional and vector databases in the process.

 

traditional vs vector databases
Traditional vs vector databases

 

Data models

Traditional databases:

They use a relational model that consists of a structured tabular form. Data is contained in tables divided into rows and columns. While each column represents a particular field, each row represents a single record within that field. Hence, the data is well-organized and maintains a well-defined relationship between different entities.

This relational data model holds a rigid schema, defining the structure of the data upfront. While it ensures high data integrity, it also makes the model inflexible in handling diverse and evolving data types.

Vector databases:

Instead of a relational row and column structure, vector databases use a vector-based model consisting of a multidimensional array of numbers. Each data point is stored as a vector in a three-dimensional space, representing different features and properties of data.

Unlike a traditional database, the vector representation is well-suited to store unstructured data. It also allows easier handling of complex data points, making it a versatile data model. Its flexible schema allows better adaptability but at the cost of data integrity.

Suggestion:

Based on the data models of both databases, it can be said that when making a choice, you must find the right balance between maintaining data integrity and flexible data-handling capabilities. Understanding your database requirements between these two properties will help you towards an accurate option.

 

Here’s your guide to top vector databases in the market

 

Query language

Traditional databases:

They rely on Structured Query Language (SQL), designed to navigate through relational databases. It provides a standardized way to interact with data, allowing data manipulation in the form of updating, inserting, deleting, and more.

It presents a highly focused method of addressing queries where data is filtered using exact matches, comparisons, and logical operators. SQL querying has long been present in the industry, hence it comes with a rich ecosystem of support.

Vector databases:

Unlike a declarative language like SQL, vector databases execute querying through API calls. These can vary based on the vector database you use. The APIs perform similarity searches and nearest-neighbor operations as part of the querying process.

The process is based on retrieving similar data points to a query from the multidimensional vector space. It leverages indexing and search techniques that are suitable for complex vector databases.

Suggestion:

Hence, query language specifications are highly particular to your choice of a database. You would have to rely on either SQL for traditional databases or work with API calls if you are dealing with vector spaces for data storage.

 

Learn to build LLM applications

 

Indexing techniques

Traditional databases:

 

Different data representation in a Hash and B-Tree Index
Different data representation in a Hash and B-Tree Index – Source: IT Tutorial

 

Indexing techniques for traditional databases include B-trees and hash indexes that are designed for structured data. B-trees is the most common method that organizes data in a hierarchical tree format. It assists in the efficient sorting and retrieval of data.

Hash indexes rely on hash functions to map data to particular locations in an index. On accessing this location, you can retrieve the actual data stored there. They are integral for point queries where exact matches are known.

Vector databases:

HNSW and IVF are indexing methods that specialize in handling vector databases. These differentiated techniques optimize similarity searches in high-dimensional vector data.

 

A visual representation of HNSW
A visual representation of HNSW – Source: Pinecone

 

HNSW stands for Hierarchical Navigable Small World which facilitates rapid proximity searches. It creates a multi-layer navigation graph to represent the vector space, creating a network of shortcuts to narrow down the search space to a small subset of similar vectors.

IVF or Inverted File Index divides the vector space into clusters and creates an inverted file for each cluster. A file records vectors that belong to each cluster. It enables comparison and detailed data search within clusters.

Both methods aim to enhance the similarity search in vector databases. While HNSW speeds up the process, IVF also increases its efficiency.

Suggestion:

While traditional indexing techniques optimize precise queries and efficient data manipulation in structured data, vector database methods are designed for similarity searches within high-dimensional data, handling complex queries such as nearest neighbor searches in machine learning applications.

 

Learn more about the mystery of indexing

 

Performance and scalability

Traditional databases:

These databases manage transactional workloads with a focus on data integrity (ACID compliance) and support complex querying capabilities. However, their performance is limited due to their design of vertical scalability, making it a costly and hardware-dependent process to handle large data volumes.

Vector databases:

Vector databases provide distinct performance advantages in environments requiring quick insights from large volumes of complex data, enabling efficient search operations. Moreover, its horizontal scalability design promotes the distribution of data management across multiple machines, making it a cost-effective process.

Suggestion:

Performance-based decisions can be made by finding the right balance between data integrity and flexible data handling, similar to the consideration of their data model differences. However, the horizontal and vertical scalability highlights that vector databases are more cost-efficient for large data volumes.

 

Use cases

Traditional databases:

They are ideal for applications that rely on structured data and require transactional safety while managing data records and performing complex queries. Some common use cases include financial systems, E-commerce platforms, customer relationship management (CRM), and human resource (HR) systems.

Vector databases:

They are useful for complex and multimodal datasets, often associated with complex machine learning (ML) tasks. Some important use cases include natural language processing (NLP), fraud detection, recommendation systems, and real-time personalization.

 

Understand tasks and techniques of natural language processing

 

Suggestion:

The differences in use cases highlight the varied strengths of both databases. You cannot undermine one over the other but understand both databases better to make the right choice for your data. Traditional databases remain the backbone for structured data while vector databases are better adapted for modern datasets.

 

 

The final verdict

Traditional databases are suitable for small or medium-sized datasets where retrieval of specific data is required from well-defined links of information. Vector databases, on the other hand, are better for large unstructured datasets with a focus on similarity searches.

Hence, the clash of databases can be seen as a tradition meeting innovation. Traditional databases excel in structured realms, while vector databases revolutionize with speed in high-dimensional data. The final verdict of making the right choice hinges on your specific use cases.

Areesha Afzal - Author
Areesha Afzal
| March 7

In the dynamic world of machine learning and natural language processing (NLP), database optimization is crucial for effective data handling.

Hence, the pivotal role of vector databases in the efficient storage and retrieval of embeddings has become increasingly apparent. These sophisticated platforms have emerged as indispensable tools, providing a robust infrastructure for managing the intricate data structures generated by large language models.

This blog embarks on a comprehensive exploration of the profound significance of vector databases. We will delve into the different types of vector databases, analyzing their unique features and applications in large language model (LLM) scenarios. Additionally, real-world case studies will illuminate the tangible impact of these databases across diverse applications.

 

Understanding Vector Databases and Their Significance

Vector databases represent purpose-built platforms meticulously designed to address the intricate challenges posed by the storage and retrieval of vector embeddings.

In the landscape of NLP applications, these embeddings serve as the lifeblood, capturing intricate semantic and contextual relationships within vast datasets. Traditional databases, grappling with the high-dimensional nature of these embeddings, falter in comparison to the efficiency and adaptability offered by vector databases.

 

Visual representation of traditional and vector databases
Visual representation of traditional and vector databases

 

The uniqueness of vector databases lies in their tailored ability to efficiently manage complex data structures, a critical requirement for handling embeddings generated from large language models and other intricate machine learning models.

These databases serve as the hub, providing an optimized solution for the nuanced demands of NLP tasks. In a landscape where the boundaries of machine learning are continually pushed, vector databases stand as pillars of adaptability, efficiently catering to the specific needs of high-dimensional vector storage and retrieval.

 

Understanding vector databases
Understanding vector databases

 

Exploring Different Types of Vector Databases and Their Features

The vast landscape of vector databases unfolds in diverse types, each armed with unique features meticulously crafted for specific use cases.

 

Types of vector databases for database optimization
Types of vector databases

 

Weaviate: Graph-Driven Semantic Understanding

Weaviate stands out for seamlessly blending graph database features with powerful vector search capabilities, making it an ideal choice for NLP applications requiring advanced semantic understanding and embedding exploration.

With a user-friendly RESTful API, client libraries, and a WebUI, Weaviate simplifies integration and management for developers. The API ensures standardized interactions, while client libraries abstract complexities, and the WebUI offers an intuitive graphical interface.

Weaviate’s cohesive approach empowers developers to leverage its capabilities effortlessly, making it a standout solution in the evolving landscape of data management for NLP.

 

Large language model bootcamp

 

DeepLake: Open-Source Scalability and Speed

DeepLake, an open-source powerhouse, excels in the efficient storage and retrieval of embeddings, prioritizing scalability and speed. With a distributed architecture and built-in support for horizontal scalability, DeepLake emerges as the preferred solution for managing vast NLP datasets.

Its implementation of an Approximate Nearest Neighbor (ANN) algorithm, specifically based on the Product Quantization (PQ) method, not only guarantees rapid search capabilities but also maintains pinpoint accuracy in similarity searches.

DeepLake is meticulously designed to address the challenges of handling large-scale NLP data, offering a robust and high-performance solution for storage and retrieval tasks.

 

Deep Lake architectural pattern for database optimization
Deep Lake architectural pattern

 

Faiss by Facebook: High-Performance Similarity Search

Faiss, known for its outstanding performance in similarity searches, offers a diverse range of optimized indexing methods for swift retrieval of nearest neighbors. With support for GPU acceleration and a user-friendly Python interface, Faiss firmly establishes itself in the vector database landscape.

This versatility enables seamless integration with NLP pipelines, enhancing its effectiveness across a wide spectrum of machine learning applications. Faiss stands out as a powerful tool, combining performance, flexibility, and ease of integration for robust similarity search capabilities in diverse use cases.

 

Milvus: Scaling Heights with Open-Source Flexibility

Milvus, an open-source tool, stands out for its emphasis on scalability and GPU acceleration. Its ability to scale up and work with graphics cards makes it great for managing large NLP datasets. Milvus is designed to be distributed across multiple machines, making it ideal for handling massive amounts of data.

It easily integrates with popular libraries like Faiss, Annoy, and NMSLIB, giving developers more choices for organizing data and improving the accuracy and efficiency of vector searches. The diversity of vector databases ensures that developers have a nuanced selection of tools, each catering to specific requirements and use cases within the expansive landscape of NLP and machine learning.

 

A guide to exploring top vector databases in the market

 

Efficient Storage and Retrieval of Vector Embeddings for LLM Applications

Efficiently leveraging vector databases for the storage and retrieval of embeddings in the world of large language models (LLMs) involves a meticulous process. This journey is multifaceted, encompassing crucial considerations and strategic steps that collectively pave the way for optimized performance.

 

Choosing the Right Database

The foundational step in this intricate process is the selection of a vector database that seamlessly aligns with the scalability, speed, and indexing requirements specific to the LLM project at hand.

The decision-making process involves a careful evaluation of the project’s intricacies, understanding the nuances of the data, and forecasting future scalability needs. The chosen vector database becomes the backbone, laying the groundwork for subsequent stages in the embedding storage and retrieval journey.

 

Integration with NLP Pipelines

Leveraging the provided RESTful APIs and client libraries is the key to ensuring a harmonious integration of the chosen vector database within NLP frameworks and LLM applications.

This stage is characterized by a meticulous orchestration of tools, ensuring that the vector database seamlessly becomes an integral part of the larger ecosystem. The RESTful APIs serve as the conduit, facilitating communication and interaction between the database and the broader NLP infrastructure.

 

Learn to build LLM applications

 

Optimizing Search Performance

The crux of efficient storage and retrieval lies in the optimization of search performance. Here, developers delve into the intricacies of the chosen vector database, exploring and utilizing specific indexing methods and GPU acceleration capabilities.

These nuanced optimizations are tailored to the unique demands of LLM applications, ensuring that vector searches are not only precise but also executed with optimal speed. The performance optimization stage serves as the fine-tuning mechanism, aligning the vector database with the intricacies of large language models.

 

Language-specific Indexing

In scenarios where LLM applications involve multilingual content, the choice of a vector database supporting language-specific indexing and retrieval capabilities becomes paramount. This consideration reflects the diverse linguistic landscape that the LLM is expected to navigate.

Language-specific indexing ensures that the vector database comprehends and processes linguistic nuances, ultimately leading to accurate search results across different languages.

 

Incremental Updates

A forward-thinking strategy involves the consideration of vector databases supporting incremental updates. This capability is crucial for LLM applications characterized by dynamically changing embeddings.

The vector database’s ability to efficiently store and retrieve these dynamic embeddings, adapting in real-time to the evolving nature of the data, becomes a pivotal factor in ensuring the sustained accuracy and relevance of the LLM application.

This multifaceted approach to embedding storage and retrieval for LLM applications ensures that developers navigate the complexities of large language models with precision and efficacy, harnessing the full potential of vector databases.

 

Read about the role of vector embeddings in generative AI

 

Case Studies: Real-world Impact of Database Optimization with Vector Databases

The real-world impact of vector databases unfolds through compelling case studies across diverse industries, showcasing their versatility and efficacy in varied applications.

 

Case Study 1: Semantic Understanding in Chatbots

The implementation of Weaviate’s vector database in an AI chatbot leveraging large language models exemplifies the real-world impact on semantic understanding. Weaviate facilitates the efficient storage and retrieval of semantic embeddings, enabling the chatbot to interpret user queries within context.

The result is a chatbot that provides accurate and contextually relevant responses, significantly enhancing the user experience.

 

Case Study 2: Multilingual NLP Applications

VectorStore’s language-specific indexing and retrieval capabilities take center stage in a multilingual NLP platform.

The case study illuminates how VectorStore efficiently manages and retrieves embeddings across different languages, providing contextually relevant results for a global user base. This underscores the adaptability of vector databases in diverse linguistic landscapes.

 

Understanding NLP-database optimization
Understanding multilingual NLP applications

 

Case Study 3: Image Generation and Similarity Search

In the world of image generation and similarity search, a company harnesses vector databases to streamline the storage and retrieval of image embeddings. By representing images as high-dimensional vectors, the vector database enables swift and accurate similarity searches, enhancing tasks such as image categorization, duplicate detection, and recommendation systems.

The real-world impact extends to the world of visual content, underscoring the versatility of vector databases.

 

Case Study 4: Movie and Product Recommendations

E-commerce and movie streaming platforms optimize their recommendation systems through the power of vector databases. Representing movies or products as high-dimensional vectors based on attributes like genre, cast, and user reviews, the vector database ensures personalized recommendations.

This personalized touch elevates the user experience, leading to higher conversion rates and improved customer retention. The case study vividly illustrates how vector databases contribute to the dynamic landscape of recommendation systems.

 

Case Study 5: Sentiment Analysis in Social Media

A social media analytics company transforms sentiment analysis with the efficient use of vector databases. Representing text snippets or social media posts as high-dimensional vectors, the vector database enables rapid and accurate sentiment analysis. This real-time analysis of large volumes of text data provides valuable insights, allowing businesses and marketers to track public opinion, detect trends, and identify potential brand reputation issues.

 

Case Study 6: Fraud Detection in Financial Services

The application of vector databases in a financial services company amplifies fraud detection capabilities. By representing transaction patterns as high-dimensional vectors, the vector database enables rapid similarity searches to identify suspicious or anomalous behavior.

In the world of financial services, where timely detection is paramount, vector databases provide the efficiency and accuracy needed to safeguard customer accounts. The case study emphasizes the real-world impact of vector databases in enhancing security measures.

 

 

The final word

In conclusion, the complex interplay of efficient storage and retrieval of vector embeddings using vector databases is at the heart of the success of machine learning and NLP applications, particularly in the expansive landscape of large language models.

This journey has unveiled the profound significance of vector databases, explored the diverse types and features they bring to the table, and provided insights into their application in LLM scenarios.

Real-world case studies have served as representations of their tangible impact, showcasing their ability to enhance semantic understanding, multilingual support, image generation, recommendation systems, sentiment analysis, and fraud detection.

By assimilating the insights shared in this exploration, developers embark on a path that brings them closer to harnessing the full potential of vector databases. These databases, with their adaptability, efficiency, and real-world impact, emerge as indispensable allies in the dynamic landscape of machine learning and NLP applications.

Data Science Dojo
Ayesha Saleem
| March 3

In the debate of LlamaIndex vs LangChain, developers can align their needs with the capabilities of both tools, resulting in an efficient application.

LLMs have become indispensable in various industries for tasks such as generating human-like text, translating languages, and providing answers to questions. At times, the LLM responses amaze you, as they are more prompt and accurate than humans. This demonstrates their significant impact on the technology landscape today.

As we delve into the arena of artificial intelligence, two tools emerge as pivotal enablers: LLamaIndex and LangChain. LLamaIndex offers a distinctive approach, focusing on data indexing and enhancing the performance of LLMs, while LangChain provides a more general-purpose framework, flexible enough to pave the way for a broad spectrum of LLM-powered applications.

 

Although both LlamaIndex and LangChain are capable of developing comprehensive generative AI applications, each focus on different aspects of the application development process.

 

Llamaindex vs langchain
Source:  Superwise.AI

 

 

The above figure illustrates how LlamaIndex is more concerned with the initial stages of data handling—like loading, ingesting, and indexing to form a base of knowledge. In contrast, LangChain focuses on the latter stages, particularly on facilitating interactions between the AI (large language models, or LLMs) and users through multi-agent systems.

Essentially, the combination of LlamaIndex’s data management capabilities with LangChain’s user interaction enhancement can lead to more powerful and efficient generative AI applications.

 

Let’s begin by understanding each of the two framework’s roles in building LLMs:

 

LLamaIndex: The bridge between data and LLM power

LLamaIndex steps forward as an essential tool, allowing users to build structured data indexes, use multiple LLMs for diverse applications, and improve data queries using natural language.

It stands out for its data connectors and index-building prowess, which streamline data integration by ensuring direct data ingestion from native sources, fostering efficient data retrieval, and enhancing the quality and performance of data used with LLMs.

LLamaIndex distinguishes itself with its engines, which create a symbiotic relationship between data sources and LLMs through a flexible framework. This remarkable synergy paves the way for applications like semantic search and context-aware query engines that consider user intent and context, delivering tailored and insightful responses.

 

Learn all about LlamaIndex from its Co-founder and CEO, Jerry Liu, himself! 

Features of LlamaIndex:

LlamaIndex is an innovative tool designed to enhance the utilization of large language models (LLMs) by seamlessly connecting your data with the powerful computational capabilities of these models. It possesses a suite of features that streamline data tasks and amplify the performance of LLMs for a variety of applications, including:

Data Connectors:

  • Data connectors simplify the integration of data from various sources into the data repository, bypassing manual and error-prone extraction, transformation, and loading (ETL) processes.
  • These connectors enable direct data ingestion from native formats and sources, eliminating the need for time-consuming data conversions.
  • Advantages of using data connectors include automated enhancement of data quality, data security via encryption, improved data performance through caching, and reduced maintenance for data integration solutions.

Engines:

  • LLamaIndex Engines are the driving force that bridges LLMs and data sources, ensuring straightforward access to real-world information.
  • The engines are equipped with smart search systems that comprehend natural language queries, allowing for smooth interactions with data.
  • They are not only capable of organizing data for expeditious access but also enriching LLM-powered applications by adding supplementary information and aiding in LLM selection for specific tasks.

 

Data Agents:

  • Data agents are intelligent, LLM-powered components within LLamaIndex that perform data management effortlessly by dealing with various data structures and interacting with external service APIs.
  • These agents go beyond static query engines by dynamically ingesting and modifying data, adjusting to ever-changing data landscapes.
  • Building a data agent involves defining a decision-making loop and establishing tool abstractions for a uniform interaction interface across different tools.
  • LLamaIndex supports OpenAI Function agents as well as ReAct agents, both of which harness the strength of LLMs in conjunction with tool abstractions for a new level of automation and intelligence in data workflows.

Read this blog on LlamaIndex to learn more in detail

Application Integrations:

  • The real strength of LLamaIndex is revealed through its wide array of integrations with other tools and services, allowing the creation of powerful, versatile LLM-powered applications.
  • Integrations with vector stores like Pinecone and Milvus facilitate efficient document search and retrieval.
  • LLamaIndex can also merge with tracing tools such as Graphsignal for insights into LLM-powered application operations and integrate with application frameworks such as Langchain and Streamlit for easier building and deployment.
  • Integrations extend to data loaders, agent tools, and observability tools, thus enhancing the capabilities of data agents and offering various structured output formats to facilitate the consumption of application results.

 

An interesting read for you: Roadmap Of LlamaIndex To Creating Personalized Q&A Chatbots

 

LangChain: The Flexible Architect for LLM-Infused Applications

In contrast, LangChain emerges as a master of versatility. It’s a comprehensive, modular framework that empowers developers to combine LLMs with various data sources and services.

LangChain thrives on its extensibility, wherein developers can orchestrate operations such as retrieval augmented generation (RAG), crafting steps that use external data in the generative processes of LLMs. With RAG, LangChain acts as a conduit, transporting personalized data during creation, embodying the magic of tailoring output to meet specific requirements.

Features of LangChain

Key components of LangChain include Model I/O, retrieval systems, and chains.

Model I/O:

  • LangChain’s Module Model I/O facilitates interactions with LLMs, providing a standardized and simplified process for developers to integrate LLM capabilities into their applications.
  • It includes prompts that guide LLMs in executing tasks, such as generating text, translating languages, or answering queries.
  • Multiple LLMs, including popular ones like the OpenAI API, Bard, and Bloom, are supported, ensuring developers have access to the right tools for varied tasks.
  • The input parsers component transforms user input into a structured format that LLMs can understand, enhancing the applications’ ability to interact with users.

Retrieval Systems:

  • One of the standout features of LangChain is the Retrieval Augmented Generation (RAG), which enables LLMs to access external data during the generative phase, providing personalized outputs.
  • Another core component is the Document Loaders, which provide access to a vast array of documents from different sources and formats, supporting the LLM’s ability to draw from a rich knowledge base.
  • Text embedding models are used to create text embeddings that capture the semantic meaning of texts, improving related content discovery.
  • Vector Stores are vital for efficient storage and retrieval of embeddings, with over 50 different storage options available.
  • Different retrievers are included, offering a range of retrieval algorithms from basic semantic searches to advanced techniques that refine performance.

 

A comprehensive guide to understanding Langchain in detail

 

Chains:

  • LangChain introduces Chains, a powerful component for building more complex applications that require the sequential execution of multiple steps or tasks.
  • Chains can either involve LLMs working in tandem with other components, offer a traditional chain interface, or utilize the LangChain Expression Language (LCEL) for chain composition.
  • Both pre-built and custom chains are supported, indicating a system designed for versatility and expansion based on the developer’s needs.
  • The Async API is featured within LangChain for running chains asynchronously, reinforcing the usability of elaborate applications involving multiple steps.
  • Custom Chain creation allows developers to forge unique workflows and add memory (state) augmentation to Chains, enabling a memory of past interactions for conversation maintenance or progress tracking.

 

Comparing LLamaIndex and LangChain

When we compare LLamaIndex with LangChain, we see complementary visions that aim to maximize the capabilities of LLMs. LLamaIndex is the superhero of tasks that revolve around data indexing and LLM augmentation, like document search and content generation.

On the other hand, LangChain boasts its prowess in building robust, adaptable applications across a plethora of domains, including text generation, translation, and summarization.

As developers and innovators seek tools to expand the reach of LLMs, delving into the offerings of LLamaIndex and LangChain can guide them toward creating standout applications that resonate with efficiency, accuracy, and creativity.

Focused Approach vs Flexibility

  • LlamaIndex:
    • Purposefully crafted for search and retrieval applications, giving it an edge in efficiently indexing and organizing data for swift access.
    • Features a simplified interface that allows querying LLMs straightforwardly, leading to pertinent document retrieval.
    • Optimized explicitly for indexing and retrieval, leading to higher accuracy and speed in search and summarization tasks.
    • Specialized in handling large amounts of data efficiently, making it highly suitable for dedicated search and retrieval tasks that demand robust performance.
    • Offers a simple interface designed primarily for constructing search and retrieval applications, facilitating straightforward interactions with LLMs for efficient document retrieval.
    • Specializes in the indexing and retrieval process, thus optimizing search and summarization capabilities to manage large amounts of data effectively.
    • Allows for creating organized data indexes, with user-friendly features that streamline data tasks and enhance LLM performance.

 

  • LangChain:
    • Presents a comprehensive and modular framework adept at building diverse LLM-powered applications with general-purpose functionalities.
    • Provides a flexible and extensible structure that supports a variety of data sources and services, which can be artfully assembled to create complex applications.
    • Includes tools like Model I/O, retrieval systems, chains, and memory systems, offering control over the LLM integration to tailor solutions for specific requirements.
    • Presents a comprehensive and modular framework adept at building diverse LLM-powered applications with general-purpose functionalities.
    • Provides a flexible and extensible structure that supports a variety of data sources and services, which can be artfully assembled to create complex applications.
    • Includes tools like Model I/O, retrieval systems, chains, and memory systems, offering control over the LLM integration to tailor solutions for specific requirements.

 

Use cases and case studies

LlamaIndex is engineered to harness the strengths of large language models for practical applications, with a primary focus on streamlining search and retrieval tasks. Below are detailed use cases for LlamaIndex, specifically centered around semantic search, and case studies that highlight its indexing capabilities:

Semantic Search with LlamaIndex:

  • Tailored to understand the intent and contextual meaning behind search queries, it provides users with relevant and actionable search results.
  • Utilizes indexing capabilities that lead to increased speed and accuracy, making it an efficient tool for semantic search applications.
  • Empower developers to refine the search experience by optimizing indexing performance and adhering to best practices that suit their application needs.

 

Case studies showcasing indexing capabilities:

  • Data Indexes: LlamaIndex’s data indexes are akin to a super-speedy assistant’ for data searches, enabling users to interact with their data through question-answering and chat functions efficiently.
  • Engines: At the heart of indexing and retrieval, LlamaIndex engines provide a flexible structure that connects multiple data sources with LLMs, thereby enhancing data interaction and accessibility.
  • Data Agents: LlamaIndex also includes data agents, which are designed to manage both “read” and “write” operations. They interact with external service APIs and handle unstructured or structured data, further boosting automation in data management.

 

langchain use cases
Source: Medium

 

Due to its granular control and adaptability, LangChain’s framework is specifically designed to build complex applications, including context-aware query engines. Here’s how LangChain facilitates the development of such sophisticated applications:

  • Context-Aware Query Engines: LangChain allows the creation of context-aware query engines that consider the context in which a query is made, providing more precise and personalized search results.
  • Flexibility and Customization: Developers can utilize LangChain’s granular control to craft custom query processing pipelines, which is crucial when developing applications that require understanding the nuanced context of user queries.
  • Integration of Data Connectors: LangChain enables the integration of data connectors for effortless data ingestion, which is beneficial for building query engines that pull contextually relevant data from diverse sources.
  • Optimization for Specific Needs: With LangChain, developers can optimize performance and fine-tune components, allowing them to construct context-aware query engines that cater to specific needs and provide customized results, thus ensuring the most optimal search experience for users.

 

Which framework should I choose? LlamaIndex vs LangChain

Understanding these unique aspects empowers developers to choose the right framework for their specific project needs:

  • Opt for LlamaIndex if you are building an application with a keen focus on search and retrieval efficiency and simplicity, where high throughput and processing of large datasets are essential.
  • Choose LangChain if you aim to construct more complex, flexible LLM applications that might include custom query processing pipelines, multimodal integration, and a need for highly adaptable performance tuning.

In conclusion, by recognizing the unique features and differences between LlamaIndex and LangChain, developers can more effectively align their needs with the capabilities of these tools, resulting in the construction of more efficient, powerful, and accurate search and retrieval applications powered by large language models

Fiza Author image
Fiza Fatima
| February 29

Welcome to the world of open-source (LLMs) large language models, where the future of technology meets community spirit. By breaking down the barriers of proprietary systems, open language models invite developers, researchers, and enthusiasts from around the globe to contribute to, modify, and improve upon the foundational models.

This collaborative spirit not only accelerates advancements in the field but also ensures that the benefits of AI technology are accessible to a broader audience. As we navigate through the intricacies of open-source language models, we’ll uncover the challenges and opportunities that come with adopting an open-source model, the ecosystems that support these endeavors, and the real-world applications that are transforming industries.

Benefits of open-source LLMs

As soon as ChatGPT was revealed, OpenAI’s GPT models quickly rose to prominence. However, businesses began to recognize the high costs associated with closed-source models, questioning the value of investing in large models that lacked specific knowledge about their operations.

In response, many opted for smaller open LLMs, utilizing Retriever-And-Generator (RAG) pipelines to integrate their data, achieving comparable or even superior efficiency.

There are several advantages to closed-source large language models worth considering.

Benefits of Open-Source large language models LLMs

  1. Cost-effectiveness:

Open-source Large Language Models (LLMs) present a cost-effective alternative to their proprietary counterparts, offering organizations a financially viable means to harness AI capabilities.

  • No licensing fees are required, significantly lowering initial and ongoing expenses.
  • Organizations can freely deploy these models, leading to direct cost reductions.
  • Open large language models allow for specific customization, enhancing efficiency without the need for vendor-specific customization services.
  1. Flexibility:

Companies are increasingly preferring the flexibility to switch between open and proprietary (closed) models to mitigate risks associated with relying solely on one type of model.

This flexibility is crucial because a model provider’s unexpected update or failure to keep the model current can negatively affect a company’s operations and customer experience.

Companies often lean towards open language models when they want more control over their data and the ability to fine-tune models for specific tasks using their data, making the model more effective for their unique needs.

  1. Data ownership and control:

Companies leveraging open-source language models gain significant control and ownership over their data, enhancing security and compliance through various mechanisms. Here’s a concise overview of the benefits and controls offered by using open large language models:

Data hosting control:

  • Choice of data hosting on-premises or with trusted cloud providers.
  • Crucial for protecting sensitive data and ensuring regulatory compliance.

Internal data processing:

  • Avoids sending sensitive data to external servers.
  • Reduces the risk of data breaches and enhances privacy.

Customizable data security features:

  • Flexibility to implement data anonymization and encryption.
  • Helps comply with data protection laws like GDPR and CCPA.

Transparency and audibility:

  • The open-source nature allows for code and process audits.
  • Ensures alignment with internal and external compliance standards.

Examples of enterprises leveraging open-source LLMs

Here are examples of how different companies around the globe have started leveraging open language models.

enterprises leveraging open-source LLMs in 2024

  1. VMWare

VMWare, a noted enterprise in the field of cloud computing and digitalization, has deployed an open language model called the HuggingFace StarCoder. Their motivation for using this model is to enhance the productivity of their developers by assisting them in generating code.

This strategic move suggests VMware’s priority for internal code security and the desire to host the model on their infrastructure. It contrasts with using an external system like Microsoft-owned GitHub’s Copilot, possibly due to sensitivities around their codebase and not wanting to give Microsoft access to it

  1. Brave

Brave, the security-focused web browser company, has deployed an open-source large language model called Mixtral 8x7B from Mistral AI for their conversational assistant named Leo, which aims to differentiate the company by emphasizing privacy.

Previously, Leo utilized the Llama 2 model, but Brave has since updated the assistant to default to the Mixtral 8x7B model. This move illustrates the company’s commitment to integrating open LLM technologies to maintain user privacy and enhance their browser’s functionality.

  1. Gab Wireless

Gab Wireless, the company focused on child-friendly mobile phone services, is using a suite of open-source models from Hugging Face to add a security layer to its messaging system. The aim is to screen the messages sent and received by children to ensure that no inappropriate content is involved in their communications. This usage of open language models helps Gab Wireless ensure safety and security in children’s interactions, particularly with individuals they do not know.

  1. IBM

IBM actively incorporates open models across various operational areas.

  • AskHR application: Utilizes IBM’s Watson Orchestration and open language models for efficient HR query resolution.
  • Consulting advantage tool: Features a “Library of Assistants” powered by IBM’s wasonx platform and open-source large language models, aiding consultants.
  • Marketing initiatives: Employs an LLM-driven application, integrated with Adobe Firefly, for innovative content and image generation in marketing.
  1. Intuit

Intuit, the company behind TurboTax, QuickBooks, and Mailchimp, has developed its language models incorporating open LLMs into the mix. These models are key components of Intuit Assist, a feature designed to help users with customer support, analysis, and completing various tasks. The company’s approach to building these large language models involves using open-source frameworks, augmented with Intuit’s unique, proprietary data.

  1. Shopify

Shopify has employed publically available language models in the form of Shopify Sidekick, an AI-powered tool that utilizes Llama 2. This tool assists small business owners with automating tasks related to managing their commerce websites. It can generate product descriptions, respond to customer inquiries, and create marketing content, thereby helping merchants save time and streamline their operations.

  1. LyRise

LyRise, a U.S.-based talent-matching startup, utilizes open language models by employing a chatbot built on Llama, which operates similarly to a human recruiter. This chatbot assists businesses in finding and hiring top AI and data talent, drawing from a pool of high-quality profiles in Africa across various industries.

  1. Niantic

Niantic, known for creating Pokémon Go, has integrated open-source large language models into its game through the new feature called Peridot. This feature uses Llama 2 to generate environment-specific reactions and animations for the pet characters, enhancing the gaming experience by making character interactions more dynamic and context-aware.

  1. Perplexity

Here’s how Perplexity leverages open-source LLMs

  • Response generation process:

When a user poses a question, Perplexity’s engine executes approximately six steps to craft a response. This process involves the use of multiple language models, showcasing the company’s commitment to delivering comprehensive and accurate answers.

In a crucial phase of response preparation, specifically the second-to-last step, Perplexity employs its own specially developed open-source language models. These models, which are enhancements of existing frameworks like Mistral and Llama, are tailored to succinctly summarize content relevant to the user’s inquiry.

The fine-tuning of these models is conducted on AWS Bedrock, emphasizing the choice of open models for greater customization and control. This strategy underlines Perplexity’s dedication to refining its technology to produce superior outcomes.

  • Partnership and API integration:

Expanding its technological reach, Perplexity has entered into a partnership with Rabbit to incorporate its open-source large language models into the R1, a compact AI device. This collaboration facilitated through an API, extends the application of Perplexity’s innovative models, marking a significant stride in practical AI deployment.

  1. CyberAgent

CyberAgent, a Japanese digital advertising firm, leverages open language models with its OpenCALM initiative, a customizable Japanese language model enhancing its AI-driven advertising services like Kiwami Prediction AI. By adopting an open-source approach, CyberAgent aims to encourage collaborative AI development and gain external insights, fostering AI advancements in Japan. Furthermore, a partnership with Dell Technologies has upgraded their server and GPU capabilities, significantly boosting model performance (up to 5.14 times faster), thereby streamlining service updates and enhancements for greater efficiency and cost-effectiveness.

Challenges of open-source LLMs

While open LLMs offer numerous benefits, there are substantial challenges that can plague the users.

  1. Customization necessity:

Open language models often come as general-purpose models, necessitating significant customization to align with an enterprise’s unique workflows and operational processes. This customization is crucial for the models to deliver value, requiring enterprises to invest in development resources to adapt these models to their specific needs.

  1. Support and governance:

Unlike proprietary models that offer dedicated support and clear governance structures, publically available large language models present challenges in managing support and ensuring proper governance. Enterprises must navigate these challenges by either developing internal expertise or engaging with the open-source community for support, which can vary in responsiveness and expertise.

  1. Reliability of techniques:

Techniques like Retrieval-Augmented Generation aim to enhance language models by incorporating proprietary data. However, these techniques are not foolproof and can sometimes introduce inaccuracies or inconsistencies, posing challenges in ensuring the reliability of the model outputs.

  1. Language support:

While proprietary models like GPT are known for their robust performance across various languages, open-source large language models may exhibit variable performance levels. This inconsistency can affect enterprises aiming to deploy language models in multilingual environments, necessitating additional effort to ensure adequate language support.

  1. Deployment complexity:

Deploying publically available language models, especially at scale, involves complex technical challenges. These range from infrastructure considerations to optimizing model performance, requiring significant technical expertise and resources to overcome.

  1. Uncertainty and risk:

Relying solely on one type of model, whether open or closed source, introduces risks such as the potential for unexpected updates by the provider that could affect model behavior or compliance with regulatory standards.

  1. Legal and ethical considerations:

Deploying LLMs entails navigating legal and ethical considerations, from ensuring compliance with data protection regulations to addressing the potential impact of AI on customer experiences. Enterprises must consider these factors to avoid legal repercussions and maintain trust with their users.

  1. Lack of public examples:

The scarcity of publicly available case studies on the deployment of publically available LLMs in enterprise settings makes it challenging for organizations to gauge the effectiveness and potential return on investment of these models in similar contexts.

Overall, while there are significant potential benefits to using publically available language models in enterprise settings, including cost savings and the flexibility to fine-tune models, addressing these challenges is critical for successful deployment

Embracing open-source LLMs: A path to innovation and flexibility

In conclusion, open-source language models represent a pivotal shift towards more accessible, customizable, and cost-effective AI solutions for enterprises. They offer a unique blend of benefits, including significant cost savings, enhanced data control, and the ability to tailor AI tools to specific business needs, while also presenting challenges such as the need for customization and navigating support complexities.

Through the collaborative efforts of the global open-source community and the innovative use of these models across various industries, enterprises are finding new ways to leverage AI for growth and efficiency.

However, success in this endeavor requires a strategic approach to overcome inherent challenges, ensuring that businesses can fully harness the potential of publically available LLMs to drive innovation and maintain a competitive edge in the fast-evolving digital landscape.

Author image - Ayesha
Ayesha Saleem
| February 27

In the dynamic world of artificial intelligence, strides in innovation are commonplace. At the forefront of these developments is Mistral AI, a European company emerging as a strong contender in the Large Language Models (LLM) arena with its latest offering: Mistral Large. With capabilities meant to rival industry giants, Mistral AI is poised to leave a significant imprint on the tech landscape.

 

Features of Mistral AI’s large model

 

Mistral AI’s new flagship model, codenamed Mistral Large, isn’t just a mere ripple in the AI pond; it’s a technological tidal wave. As we take a look at what sets it apart, let’s compare the main features and capabilities of Mistral AI’s Large model, as detailed in the sources, with those commonly attributed to GPT-4.

 

Large language model bootcamp

 

Language support

Mistral Large: Natively fluent in English, French, Spanish, German, and Italian.
GPT-4: is known for supporting multiple languages, but the exact list isn’t specified in the sources.

 

Scalability

Mistral Large: Offers different versions, including Mistral Small for lower latency and cost optimization.
GPT-4: Provides various scales of models, but specific details on versions aren’t provided in the sources.

 

Training and cost

Mistral Large: Charges $8 per million input tokens and $24 per million output tokens.
GPT-4: Mistral Large is noted to be 20% cheaper than GPT-4 Turbo, which suggests GPT-4 would be more expensive.

 

Performance on benchmarks

Mistral Large: Claims to rank second after GPT-4 on commonly used benchmarks and only marginally outperforms offerings from Google and Meta under the MMLU benchmark.

GPT-4

It is known to be one of the leading models in terms of benchmark performance, but no specific details on benchmark scores are provided in the sources.

Cost to train

Mistral Large: The model reportedly cost less than $22 million to train.
GPT-4: cost over $100 million to develop, according to claims.

Multilingual Abilities

Le Chat supports a variety of languages including English, French, Spanish, German, and Italian 1.

Different Versions

Users can choose between three different models, namely Mistral Small, Mistral Large, and Mistral Next, the latter of which is designed to be brief and concise.

Web Access

Currently, Le Chat does not have the capability to access the internet 1.

Free Beta Access

Le Chat is available in a beta version that is free for users, requiring just a sign-up to use 2.

Planned Enterprise Version

Mistral AI plans to offer a paid version for enterprise clients with features like central billing and the ability to define moderation mechanisms

Please note that this comparison is based on the information provided within the sources, which may not include all features and capabilities of GPT-4 or Mistral Large.

 

Mistral AI vs. GPT-4: A comparative look

 

Mistral AI's Large Model Challenger to GPT-4 Dominance
Comparing Mistral AI’s Large Model to GPT-4

 

Against the backdrop of OpenAI’s GPT-4 stands Mistral Large, challenging the status quo with outstanding features. While GPT-4 shines with its multi-language support and high benchmark performance, Mistral Large offers a competitive edge through:

 

Affordability: It’s 20% cheaper than GPT-4 Turbo, negotiating cost-savings for AI-powered projects.

 

Benchmark Performance: Mistral Large competes closely with GPT-4, ranking just behind it while surpassing other tech behemoths in several benchmarks.

 

Multilingual Prowess: Exceptionally fluent across English, French, Spanish, German, and Italian, Mistral Large breaks language barriers with ease.

 

Efficiency in Development: Crafted with capital efficiency in mind, Mistral AI invested less than $22 million in training its model, a fraction of the cost incurred by its counterparts.

 

Commercially Savvy: The model offers a paid API with usage-based pricing, balancing accessibility with a monetized business strategy, presenting a cost-effective solution for developers and businesses.

 

Learn to build LLM applications

 

Practical applications of Mistral AI’s Large and GPT-4

 

The applications of both Mistral AI’s Large and GPT-4 sprawl across various industries and use cases, such as:

 

Natural Language Understanding: Both models demonstrate excellence in understanding and generating human-like text, pushing the boundaries of conversational AI.

 

Multilingual Support: Business expansion and global communication are facilitated through the multilingual capabilities of both LLMs.

 

Code Generation: Their ability to understand and generate code makes them invaluable tools for software developers and engineers.

 

Recommendations for use

 

As businesses and individuals navigate through the options in large language models, here’s why you might consider each tool:

 

Choose Mistral AI’s Large: If you’re looking for a cost-effective solution with efficient multilingual support and the flexibility of scalable versions to suit different needs 2.

 

Opt for GPT-4: Should your project require the prestige and robustness associated with OpenAI’s cutting-edge research and model performance, GPT-4 remains an industry benchmark 3.

 

 

Final note

 

In conclusion, while both Mistral AI’s Large and GPT-4 stand as pioneers in their own right, the choice ultimately aligns with your specific requirements and constraints. With Mistral AI nipping at the heels of OpenAI, the world of AI remains an exciting space to watch.

 

The march of AI is relentless, and as Mistral AI parallels the giants in the tech world, make sure to keep abreast of their developments, for the choice you make today could redefine your technological trajectory tomorrow.

Huda Mahmood - Author
Huda Mahmood
| February 19

Are you confused about where to start working on your large language model? It all starts with an understanding of a typical LLM project lifecycle. As part of the generative AI world, LLMs have led to innovation in machine-learning tasks.

 

Let’s take a look at the steps that make up an LLM project lifecycle and their impact on the process.

 

Roadmap to understanding an LLM project lifecycle

 

Within the realm of generative AI, a project involving large language models can be a daunting task. It demands proper coordination and skills to execute a task successfully. In order to create an ease of understanding, we have broken down a typical LLM project lifecycle into multiple steps.

 

A roadmap of an LLM project lifecycle
A roadmap of an LLM project lifecycle

 

In this section, we will delve deeper into the various stages of the process.

 

Defining the scope of the project

 

It is paramount to begin your LLM project lifecycle by understanding its scope. It begins with a comprehension of the problem you aim to solve. Market research and stakeholder interviews are a good place to start at this stage. You must also review the available technological possibilities.

 

LLMs are multifunctional but the size and architecture of the model determine its ability, ranging from long-form text generation and text summarization to language translation. Based on your research, you can determine the specifics of your LLM project and hence the scope of it.

 

The next part of this step is to explore the feasibility of a solution in generative AI. You must use this to set clear and measurable objectives as they would define the roadmap for your LLM project lifecycle.

 

Data preprocessing and relevant considerations

 

Now that you have defined your problem, the next step is to look for relevant data. Data collection can encompass various sources, depending on your problem. Once you have the data, you need to clean and preprocess it. The goal is to make the data usable for model training.

 

Moreover, it is important in your LLM project lifecycle to consider all the ethical and legal considerations when dealing with data. You must have the clearance to use data, including protection laws, anonymization, and user consent. Moreover, you must ensure the prevention of potential biases through the diversity of perspectives in the data.

 

Large language model bootcamp

 

Selecting a relevant model

 

When it comes to model selection, you have two choices. Either use an existing base model or pre-train your own from scratch. Based on your project demands, you can start by exploring the available models to check if any aligns with your requirements.

 

Models like GPT-4 and PalM2 are powerful model options. Moreover, you can also explore FLAN-T5 – a hugging face model, offering enhanced Text-to-Text Transfer Transformer features. However, you need to consider license and certification details before choosing an open-source base model.

 

In case none of the existing models fulfill your demands, you need to pre-train a model from scratch to begin your LLM project lifecycle. It requires machine-learning expertise, computational resources, and time. The large investment in pre-training results in a highly customized model for your project.

 

  • What is pre-training? It is a compute-intensive phase of unsupervised learning tasks. In an LLM project lifecycle, the objective primarily focuses on text generation or next-token prediction. During this complex process, the model is trained and the transformer architecture is decided. It results in the creation of Formation Models.

 

Training the model

 

The next step in the LLM project lifecycle is to adapt and train the foundation model. The goal is to refine your LLM model with your project requirements. Let’s look at some common techniques for the model training process.

 

  • Prompt engineering: As the name suggests, this method relies on prompt generation. You must structure prompts carefully for your LLM model to get accurate results. It requires you to have a proper understanding of your model and the project goals.

For a typical LLM model, a prompt is provided to the model for it to generate a text. This complete process is called inference. It is the simplest phase in an LLM project lifecycle that aims to refine your model responses and enhance its performance.

 

  • Fine-tuning: At this point, you focus on customizing your model to your specific project needs. The fine-tuning process enables you to convert a generic model into a tailored one by using domain-specific data, resulting in its optimized performance for particular tasks. It is a supervised learning task that adds weights to the foundation model, making it more efficient in the process.

 

  • Caching: It is one of the less-renowned but important techniques in the training process. It involves the frequent storage of prompts and responses to speed up your model’s performance. Caching high-dimensional vectors results in faster retrieval of information and generation of more efficient results.

 

Reinforcement learning

 

Reinforcement learning happens from human or AI feedback, where the former is called RLHF and the latter is RLAIF. RLHF is aimed at aligning the LLM model with human values, expectations, and standards. The human evaluators review, rate, and provide feedback on the model performance.

 

reinforcement learning-LLM project lifecycle
A visual representation of reinforcement learning – Source: Medium

 

It is an iterative process completed using rewards against each successful model output which results in the creation of a rewards model. Then the RLAIF is used to scale human feedback that ensures the model is completely aligned with the human values.

 

Learn to build LLM applications

 

Evaluating the model

 

It involves the validation and testing of your LLM model. The model is tested using unseen data (also referred to as test data). The output is evaluated against a set of metrics. Some common LLM evaluation metrics include BLEU (Bilingual Evaluation Understudy), GLUE (General Language Understanding Evaluation), and HELM (Holistic Evaluation of Language Models).

 

Along with the set metrics, the results are also analyzed for adherence to ethical standards and the absence of biases. This ensures that your model for the LLM project lifecycle is efficient and relevant to your goals.

 

Model optimization and deployment

 

Model optimization is a prerequisite to the deployment process. You must ensure that the model is efficiently designed for your application environment. The process primarily includes the reduction of model size, enhancement of inference speed, and efficient operation of the model in real-world scenarios. It ensures faster inference using less memory.

 

Some common optimization techniques include:

 

  • Distillation – it teaches a smaller model (called the student model) from a larger model (called the teacher model)

 

  • Post-training quantization – it aims to reduce the precision of model weights

 

  • Pruning – it focuses on removing the model weights that have negligible impact

 

This stage of the LLM project lifecycle concludes with seamless integration of workflows, existing systems, and architectures. It ensures smooth accessibility and operation of the model.

 

Model monitoring and building LLM applications

 

The LLM project lifecycle does not end at deployment. It is crucial to monitor the model’s performance in real-world situations and ensure its adaptability to evolving requirements. It also focuses on addressing any issues that arise and regularly updating the model parameters.

 

Finally, your model is ready for building robust LLM applications. These platforms can cater to diverse goals, including automated content creation, advanced predictive analysis, and other solutions to complex problems.

 

 

Summarizing the LLM project lifecycle

Hence, the roadmap to completing an LLM project lifecycle is a complex trajectory involving multiple stages. Each stage caters to a unique aspect of the model development process. The final goal is to create a customized and efficient machine-learning model to deploy and build innovative LLM applications.

Fiza Author image
Fiza Fatima
| February 15

Large Language Models have surged in popularity due to their remarkable ability to understand, generate, and interact with human language with unprecedented accuracy and fluency.

This surge is largely attributed to advancements in machine learning and the vast increase in computational power, enabling these models to process and learn from billions of words and texts on the internet.

OpenAI significantly shaped the landscape of LLMs with the introduction of GPT-3.5, marking a pivotal moment in the field. Unlike its predecessors, GPT-3.5 was not fully open-source, giving rise to closed-source large language models.

This move was driven by considerations around control, quality, and the commercial potential of such powerful models. OpenAI’s approach showcased the potential for proprietary models to deliver cutting-edge AI capabilities while also igniting discussions about accessibility and innovation.

The introduction of open-source LLM 

Contrastingly, companies like Meta and Mistral have opted for a different approach by releasing models like LLaMA and Mistral as open-source.

These models not only challenge the dominance of closed-source models like GPT-3.5 but also fuel the ongoing debate over which approach—open-source or closed-source—yields better results. Read more

By making their models openly available, Meta and similar entities encourage widespread innovation, allowing researchers and developers to improve upon these models, which in turn, has seen them topping performance leaderboards.

From an enterprise standpoint, understanding the differences between open-source LLM and closed-source LLM is crucial. The choice between the two can significantly impact an organization’s ability to innovate, control costs, and tailor solutions to specific needs.

Let’s dig in to understand the difference between Open-Source LLM and Closed Source LLM

What are open-source large language models?

Open-source large language models, such as the ones offered by Meta AI, provide a foundational AI technology that can analyze and generate human-like text by learning from vast datasets consisting of various written materials.

As open-source software, these language models have their source code and underlying architecture publicly accessible, allowing developers, researchers, and enterprises to use, modify, and distribute them freely.

Let’s dig into different features of open-sourced large language models

1. Community contributions

  • Broad participation:

    Open-source projects allow anyone to contribute, from individual hobbyists to researchers and developers from various industries. This diversity in the contributor base brings a wide array of perspectives, skills, and needs into the project.

  • Innovation and problem-solving:

    Different contributors may identify unique problems or have innovative ideas for applications that the original developers hadn’t considered. For example, someone might improve the model’s performance on a specific language or dialect, develop a new method for reducing bias, or create tools that make the model more accessible to non-technical users.

2. Wide range of applications

  • Specialized use cases:

    Contributors often adapt and extend open-source models for specialized use cases. For instance, a developer might fine-tune a language model on legal documents to create a tool that assists in legal research or on medical literature to support healthcare professionals.

  • New features and enhancements:

    Through experimenting with the model, contributors might develop new features, such as more efficient training algorithms, novel ways to interpret the model’s outputs, or integration capabilities with other software tools.

3. Iterative improvement and evolution

  • Feedback loop:

    The open-source model encourages a cycle of continuous improvement. As the community uses and experiments with the model, they can identify shortcomings, bugs, or opportunities for enhancement. Contributions addressing these points can be merged back into the project, making the model more robust and versatile over time.

  • Collaboration and knowledge sharing:

    Open-source projects facilitate collaboration and knowledge sharing within the community. Contributions are often documented and discussed publicly, allowing others to learn from them, build upon them, and apply them in new contexts.

4. Examples of open-sourced large language models

What are closed-source large language models?

Closed-source large language models, such as GPT-3.5 by OpenAI, embody advanced AI technologies capable of analyzing and generating human-like text through learning from extensive datasets.

Unlike their open-source counterparts, the source code and architecture of closed-source language models are proprietary, accessible only under specific terms defined by their creators. This exclusivity allows for controlled development, distribution, and usage.

Features of closed-sourced large language models

1. Controlled quality and consistency

  • Centralized development: Closed-source projects are developed, maintained, and updated by a dedicated team, ensuring a consistent quality and direction of the project. This centralized approach facilitates the implementation of high standards and systematic updates.
  • Reliability and stability: With a focused team of developers, closed-source LLMs often offer greater reliability and stability, making them suitable for enterprise applications where consistency is critical.

2. Commercial support and innovation

  • Vendor support: Closed-source models come with professional support and services from the vendor, offering assistance for integration, troubleshooting, and optimization, which can be particularly valuable for businesses.
  • Proprietary innovations:  The controlled environment of closed-source development enables the introduction of unique, proprietary features and improvements, often driving forward the technology’s frontier in specialized applications.

3. Exclusive use and intellectual property

  • Competitive advantage: The proprietary nature of closed-source language models allows businesses to leverage advanced AI capabilities as a competitive advantage, without revealing the underlying technology to competitors.
  • Intellectual property protection: Closed-source licensing protects the intellectual property of the developers, ensuring that their innovations remain exclusive and commercially valuable.

4. Customization and integration

  • Tailored solutions: While customization in closed-source models is more restricted than in open-source alternatives, vendors often provide tailored solutions or allow certain levels of configuration to meet specific business needs.
  • Seamless integration: Closed-source large language models are designed to integrate smoothly with existing systems and software, providing a seamless experience for businesses and end-users.

Examples of closed-source large language Models

  1. GPT 3.5 by OpenAI
  2. Gemini by Google
  3. Claude by Anthropic

 

Read: Should Large Language Models be Open-Sourced? Stepping into the Biggest Debates

 

Open-source and closed-source language models for enterprise adoption:

Open-Source LLMs Vs Close-Source LLMs for enterprises

 

In terms of enterprise adoption, comparing open-source and closed-source large language models involves evaluating various factors such as costs, innovation pace, support, customization, and intellectual property rights. While I can’t directly access external sources like the VentureBeat article you mentioned, I can provide a general comparison based on known aspects of how enterprises use these models:

Costs

  • Open-Source: Generally offers lower initial costs since there are no licensing fees for the software itself. However, enterprises may incur costs related to infrastructure, development, and potentially higher operational costs due to the need for in-house expertise to customize, maintain, and update the models.
  • Closed-Source: Often involves licensing fees, subscription costs, or usage-based pricing, which can predictably scale with use. While the initial and ongoing costs can be higher, these models frequently come with vendor support, reducing the need for extensive in-house expertise and potentially lowering overall maintenance and operational costs.

Innovation and updates

  • Open-Source: The pace of innovation can be rapid, thanks to contributions from a diverse and global community. Enterprises can benefit from the continuous improvements and updates made by contributors. However, the direction of innovation may not always align with specific enterprise needs.
  • Closed-Source: Innovation is managed by the vendor, which can ensure that updates are consistent and high-quality. While the pace of innovation might be slower compared to the open-source community, it’s often more predictable and aligned with enterprise needs, especially for vendors closely working with their client base.

Support and reliability

  • Open-Source: Support primarily comes from the community, forums, and potentially from third-party vendors offering professional services. While there can be a wealth of shared knowledge, response times and the availability of help can vary.
  • Closed-Source: Typically comes with professional support from the vendor, including customer service, technical support, and even dedicated account management. This can ensure reliability and quick resolution of issues, which is crucial for enterprise applications.

Customization and flexibility

  • Open-Source: Offer high levels of customization and flexibility, allowing enterprises to modify the models to fit their specific needs. This can be particularly valuable for niche applications or when integrating the model into complex systems.
  • Closed-Source: Customization is usually more limited compared to open-source models. While some vendors offer customization options, changes are generally confined to the parameters and options provided by the vendor.

Intellectual property and competitive advantage

  • Open-Source: Using open-source models can complicate intellectual property (IP) considerations, especially if modifications are shared publicly. However, they allow enterprises to build proprietary solutions on top of open technologies, potentially offering a competitive advantage through innovation.
  • Closed-Source: The use of closed-source models clearly defines IP rights, with enterprises typically not owning the underlying technology. However, leveraging cutting-edge, proprietary models can provide a different type of competitive advantage through access to exclusive technologies.

Choosing Between Open-Source LLMs and Closed-Source LLMs

The choice between open-source and closed-source language models for enterprise adoption involves weighing these factors in the context of specific business objectives, resources, and strategic directions.

Open-source models can offer cost advantages, customization, and rapid innovation but require significant in-house expertise and management. Closed-source models provide predictability, support, and ease of use at a higher cost, potentially making them a more suitable choice for enterprises looking for ready-to-use, reliable AI solutions.

Fiza Author image
Fiza Fatima
| February 9

The race of big tech and startups to create the top language model has us eager to see how things change.

Different companies are training new models to achieve better accuracy, enhanced understanding of context, and more nuanced generation capabilities, pushing the boundaries of what AI can achieve in terms of natural language understanding and generation.

A standout approach in this field is employed by Mistral AI through its development of the Mixtral model.

Distinctive for its use of the Sparse Mixture of Experts (SMoE) technique, Mixtral amalgamates the expertise of various specialized models. Each of these models excels in different areas of data processing, enabling Mixtral to navigate the complexities of language with notable precision.

This article aims to provide an in-depth examination of Mixtral, including its operational framework, unique attributes, and performance metrics. We will explore how Mixtral differentiates itself from other models in the market and the advantages it offers.

How does Mixtral work; What is so unique in its framework?

The Mixtral 8x7B model is a smart tool that’s built to be really good at a bunch of different tasks. It does this by not using all its tools at once, but just a few at a time for each piece of information it looks at.

Mixtral AI Framework
Mixtral AI Framework – Source: Mistral AI

Think of it like a toolbox where, out of 8 tools, it picks the best 2 for the job at hand. Each layer of Mixtral has these 8 special tools or “experts,” and it chooses which ones to use based on what it’s working on. This way, it can be really efficient and do its job well without needing to use everything it has all at once.

The process from the input through the router to the expert and the resulting output works as follows:

Input: A given input vector, representing a token from a sequence, enters the model. Each token is processed individually by going through the layers of the model. The input is part of a larger context, which can be a span of up to 32k tokens. Read how embeddings work here.

Router: After the initial input, the router within the Mixture of Experts layer determines which experts to engage for processing the token. Specifically, the router selects 2 out of the 8 available experts based on the token’s characteristics. This selection is done using a gating network that assigns weights to the experts, guiding which experts are to be used.

Experts: Once the experts are selected by the router, the input token is processed by these experts. Each expert consists of a standard feedforward block as found in a transformer architecture. The outputs of the two chosen experts are then combined through a weighted sum, where the weights are determined by the gating network’s output.

Output: The final output for the token is the combined result from the two experts it was routed to. Essentially, the output of the MoE layer is the weighted sum of the outputs of the expert networks.

This process is repeated for each token within the sequence, allowing the Mixtral model to effectively process and generate the response or continuation based on the input it receives.

Unique Attributes of Mixtral’s Approach

  1. High Temporal Locality

The interesting part is that Mixtral tends to pick the same expert or group of experts for words that are close together or related in some way i.e. the model possesses “high temporal locality”.

It’s like noticing that a certain part of your game has a lot of jumping, so you stick with the character who’s best at jumping for that whole section.

The implications of such high temporal locality are substantial for both training and inference efficiency. It suggests that expert assignments can be somewhat predicted over time, providing opportunities to optimize the model’s training and runtime performance.

For instance, the predictability in expert utilization can lead to more efficient caching strategies, wherein the outputs of frequently used experts are temporarily stored, thus speeding up computations for consecutive tokens that are routed to the same experts.

  1. Computational Efficiency via Dual Expert Strategy

Mixtral uses only two out of eight experts to handle each piece of data it processes. This selective engagement is key for its computational efficiency, allowing it to work as fast as a model with 12 billion parameters, even though it has four times as many parameters in total.

Performance of Mixtral

Mixtral 8x7B is compared directly with Llama 2 70B and GPT-3.5 and is found to perform similarly or above these models in benchmarks. Specifically, it scores higher on MMLU and does exceptionally well on MT-Bench.

Mixtral 8x7B Vs Llama 2 70b, ChatGPT 3.5 - Source: Mistral AI
Mixtral 8x7B Vs Llama 2 70b, ChatGPT 3.5 – Source: Mistral AI

 

Hallucinations and Bias

In comparison with Llama 2, Mixtral exhibits reduced bias in the BBQ benchmark. Furthermore, it tends to show a more favorable outlook than Llama 2 in the BOLD benchmark, while maintaining comparable variations across different aspects.

Hallucinations - Mixtral 8x7B Vs Llama 2 70b - Source: Mistral AI
Hallucinations – Mixtral 8x7B Vs Llama 2 70b – Source: Mistral AI

 Multilingualism

Mixtral vastly outperforms Llama 2 70B on multilingual benchmarks, demonstrating its strength in understanding and generating text across different languages

Hallucinations - Mixtral 8x7B Vs Llama 2 70b - Source: Mistral AI
Mixtral 8x7B Vs Llama 2 70b, ChatGPT 3.5 – Source: Mistral AI

Charting the Future: Mixtral’s Revolutionary Path in AI Efficiency and Multilinguality

Mistral AI’s Mixtral model has carved out a niche for itself, showcasing the power and precision of the Sparse Mixture of Experts approach. As we’ve navigated through the intricacies of Mixtral, from its unique architecture to its standout performances on various benchmarks, it’s clear that this model is not just another entrant in the race to AI supremacy. It’s a harbinger of a nuanced, efficient future in large language models.

By strategically deploying only two of its eight available experts for each input token, Mixtral achieves a balance between computational efficiency and deep, nuanced understanding that few models can claim. This approach not only enhances processing speed but also reduces bias and improves performance across languages, setting a new standard for what AI can achieve.

As we conclude our exploration of the Genius of Mixtral of Experts by Mistral AI, it’s evident that this model represents a significant leap forward. Through its adept handling of complex language tasks, Mixtral stands as a testament to the potential of combining specialized expertise with smart, scalable architecture. The future of AI looks brighter with Mixtral paving the way, promising models that are not only more efficient and versatile but also more understanding of the vast tapestry of human language.

Related Topics

Statistics
Resources
Programming
Machine Learning
LLM
Generative AI
Data Visualization
Data Security
Data Science
Data Engineering
Data Analytics
Computer Vision
Career
Artificial Intelligence