fbpx
Learn to build large language model applications: vector databases, langchain, fine tuning and prompt engineering. Learn more

Phi-2: Microsoft’s small language model with 2.7 billion parameters

Data Science Dojo

Ayesha Saleem

December 21

Have you heard about Microsoft’s latest tech marvel in the AI world? It’s called Phi-2, a nifty little language model that’s stirring up quite the excitement.

Despite its compact size of 2.7 billion parameters, this little dynamo is an upgrade from its predecessor, Phi-1.5. What’s cool is that it’s all set and ready for you to explore in the Azure AI Studio model catalogue.

 

Phi- 2 Launch by microsoft

Now, Phi-2 isn’t just any small language model. Microsoft’s team, led by Satya Nadella, showcased it at Ignite 2023, and guess what? They say it’s a real powerhouse, even giving the bigger players like Llama-2 and Gemini-2 a run for their money in generative AI tests.

This model isn’t just about crunching data; it’s about understanding language, making sense of the world, and reasoning logically. Microsoft even claims it can outdo models 25 times their size in certain tasks.

 

Read in detail about: Google launches Gemini AI

 

But here’s the kicker: training Phi-2 is a breeze compared to giants like GPT-4. It gets its smarts from a mix of high-quality data, including synthetic sets, everyday knowledge, and more. It’s built on a transformer framework, aiming to predict the next word in a sequence. And the training? Just 14 days on 96 A100 GPUs. Now, that’s efficient, especially when you think about GPT-4 needing up to 100 days and a whole lot more GPUs!

 

Large language model bootcamp

 

Comparative analysis of Phi-2

Comparing Phi 2, Llama 2, and other notable language models can provide insights into their unique strengths and applications.

  1. Phi 2 (Microsoft):
    • Size and Architecture: A smaller model with 2.7 billion parameters, utilizing a transformer-based architecture for efficient next-word prediction.
    • Training and Data: Trained on 1.4 trillion tokens, Phi 2 is designed for common-sense reasoning and language understanding.
    • Application: Its smaller size makes it suitable for research and development in language models, emphasizing reasoning and understanding.
  2. Llama 2 (Meta AI):
    • Training and Scope: Llama 2 is a code generation model built on a base of 500 billion tokens of code, indicating a focus on programming languages and coding applications.
    • Capabilities: It supports common programming languages and is optimized for dialogue use cases.
    • Usage: Geared towards generating code and supporting various programming languages, it is ideal for software development and related fields.
  3. Other Language Models (General Overview):
    • Models like BERT, GPT-3, Bloom, and WuDao 2.0 vary in size, training data, and applications. They range from few billion to hundreds of billions of parameters.
    • These models are used in diverse applications, including natural language processing, chatbot development, content creation, and more.
    • Each model has its own unique strengths and limitations, with some focusing on specific languages, tasks, or scales of operation.

 

Learn to build custom large language model applications today!                                                

 

Phi-2 features and capabilities

Phi-2 is a new language model developed by Microsoft, marking a significant advancement in AI technology. It stands out for several key features and capabilities:

  1. Transformer-Based Model: Phi-2 utilizes a transformer-based architecture, focusing on next-word prediction, which is a common approach in modern language models.
  2. Training Data and Size: This model is trained on 1.4 trillion tokens, indicating a substantial dataset for its learning process. Despite this, Phi-2 is referred to as a “small” language model, with 2.7 billion parameters, which is relatively small compared to some other language models in the field.
  3. Capabilities: Phi-2 demonstrates impressive capabilities in common-sense reasoning and language understanding. This makes it adept at handling various linguistic tasks and reasoning challenges.
  4. Comparative Performance: The model reportedly outperforms other models like the Llama 2 and Mistral 7B, indicating its efficiency and robustness despite its smaller size.
  5. Purpose and Application: Phi-2 is geared towards research and development in the field of language models, reflecting Microsoft’s ongoing efforts to advance AI technology.

 

Read in detail about: Multimodality revolution

 

In summary, while Phi 2 and Llama 2 are both advanced language models, they serve different purposes. Phi 2 excels in language understanding and reasoning, making it suitable for research and development, while Llama 2 focuses on code generation and software development applications. Other models, like GPT-3 or BERT, have broader applications and are often used in content generation and natural language understanding tasks.

DSD Sign

Written by Ayesha Saleem

Have a similar idea? Submit your guest post with us
Newsletters | Data Science Dojo

Up for a Weekly Dose of Data Science?

Subscribe to our weekly newsletter & stay up-to-date with current data science news, blogs, and resources.

DSD icon

Discover more from Data Science Dojo

Subscribe to get the latest updates on AI, Data Science, LLMs, and Machine Learning.