fbpx
Learn to build large language model applications: vector databases, langchain, fine tuning and prompt engineering. Learn more

This is the second blog in the series of RAG and finetuning, highlighting a detailed comparison of the two approaches.

 

You can read the first blog of the series here – A guide to understanding RAG and finetuning

 

While we provided a detailed guideline on understanding RAG and finetuning, a comparative analysis of the two provides a deeper insight. Let’s explore and address the RAG vs finetuning debate to determine the best tool to optimize LLM performance.

 

RAG vs finetuning LLM – A detailed comparison of the techniques

It’s crucial to grasp that these methodologies while targeting the enhancement of large language models (LLMs), operate under distinct paradigms. Recognizing their strengths and limitations is essential for effectively leveraging them in various AI applications.

This understanding allows developers and researchers to make informed decisions about which technique to employ based on the specific needs of their projects. Whether it’s adapting to dynamic information, customizing linguistic styles, managing data requirements, or ensuring domain-specific performance, each approach has its unique advantages.

By comprehensively understanding these differences, you’ll be equipped to choose the most suitable method—or a blend of both—to achieve your objectives in developing sophisticated, responsive, and accurate AI models.

 

Summarizing the RAG vs finetuning comparison
Summarizing the RAG vs finetuning comparison

 

Team RAG or team Fine-Tuning? Tune in to this podcast now to find out their specific benefits, trade-offs, use-cases, enterprise adoption, and more!

Adaptability to dynamic information

RAG shines in environments where information is constantly updated. By design, RAG leverages external data sources to fetch the latest information, making it inherently adaptable to changes.

This quality ensures that responses generated by RAG-powered models remain accurate and relevant, a crucial advantage for applications like real-time news summarization or updating factual content.

Fine-tuning, in contrast, optimizes a model’s performance for specific tasks through targeted training on a curated dataset.

While it significantly enhances the model’s expertise in the chosen domain, its adaptability to new or evolving information is constrained. The model’s knowledge remains as current as its last training session, necessitating regular updates to maintain accuracy in rapidly changing fields.

 

Customization and linguistic style

RAG‘s primary focus is on enriching responses with accurate, up-to-date information retrieved from external databases.

This process, though excellent for fact-based accuracy, means RAG models might not tailor their linguistic style as closely to specific user preferences or nuanced domain-specific terminologies without integrating additional customization techniques.

Fine-tuning excels in personalizing the model to a high degree, allowing it to mimic specific linguistic styles, adhere to unique domain terminologies, and align with particular content tones.

This is achieved by training the model on a dataset meticulously prepared to reflect the desired characteristics, enabling the fine-tuned model to produce outputs that closely match the specified requirements.

 

Large language model bootcamp

Data efficiency and requirements

RAG operates by leveraging external datasets for retrieval, thus requiring a sophisticated setup to manage and query these vast data repositories efficiently.

The model’s effectiveness is directly tied to the quality and breadth of its connected databases, demanding rigorous data management but not necessarily a large volume of labeled training data.

Fine-tuning, however, depends on a substantial, well-curated dataset specific to the task at hand.

It requires less external data infrastructure compared to RAG but relies heavily on the availability of high-quality, domain-specific training data. This makes fine-tuning particularly effective in scenarios where detailed, task-specific performance is paramount and suitable training data is accessible.

 

Efficiency and scalability

RAG is generally considered cost-effective and efficient for a wide range of applications, particularly because it can dynamically access and utilize information from external sources without the need for continuous retraining.

This efficiency makes RAG a scalable solution for applications requiring access to the latest information or coverage across diverse topics.

Fine-tuning demands a significant investment in time and resources for the initial training phase, especially in preparing the domain-specific dataset and computational costs.

However, once fine-tuned, the model can operate with high efficiency within its specialized domain. The scalability of fine-tuning is more nuanced, as extending the model’s expertise to new domains requires additional rounds of fine-tuning with respective datasets.

 

Explore further how to tune LLMs for optimal performance

 

Domain-specific performance

RAG demonstrates exceptional versatility in handling queries across a wide range of domains by fetching relevant information from its external databases.

Its performance is notably robust in scenarios where access to wide-ranging or continuously updated information is critical for generating accurate responses.

Fine-tuning is the go-to approach for achieving unparalleled depth and precision within a specific domain.

By intensively training the model on targeted datasets, fine-tuning ensures the model’s outputs are not only accurate but deeply aligned with the domain’s subtleties, making it ideal for specialized applications requiring high expertise.

 

Hybrid approach: Enhancing LLMs with RAG and finetuning

The concept of a hybrid model that integrates Retrieval-Augmented Generation (RAG) with fine-tuning presents an interesting advancement. This approach allows for the contextual enrichment of LLM responses with up-to-date information while ensuring that outputs are tailored to the nuanced requirements of specific tasks.

Such a model can operate flexibly, serving as either a versatile, all-encompassing system or as an ensemble of specialized models, each optimized for particular use cases.

In practical applications, this could range from customer service chatbots that pull the latest policy details to enrich responses and then tailor these responses to individual user queries, to medical research assistants that retrieve the latest clinical data for accurate information dissemination, adjusted for layman understanding.

The hybrid model thus promises not only improved accuracy by grounding responses in factual, relevant data but also ensures that these responses are closely aligned with specific domain languages and terminologies.

However, this integration introduces complexities in model management, potentially higher computational demands, and the need for effective data strategies to harness the full benefits of both RAG and fine-tuning.

Despite these challenges, the hybrid approach marks a significant step forward in AI, offering models that combine broad knowledge access with deep domain expertise, paving the way for more sophisticated and adaptable AI solutions.

 

Choosing the best approach: Finetuning, RAG, or hybrid

Choosing between fine-tuning, Retrieval-Augmented Generation (RAG), or a hybrid approach for enhancing a Large Language Model should consider specific project needs, data accessibility,  and the desired outcome alongside computational resources and scalability.

Fine-tuning is best when you have extensive domain-specific data and seek to tailor the LLM’s outputs closely to specific requirements, making it a perfect fit for projects like creating specialized educational content that adapts to curriculum changes. RAG, with its dynamic retrieval capability, suits scenarios where responses must be informed by the latest information, ideal for financial analysis tools that rely on current market data.

A hybrid approach merges these advantages, offering the specificity of fine-tuning with the contextual awareness of RAG, suitable for enterprises needing to keep pace with rapid information changes while maintaining deep domain relevance. As technology evolves, a hybrid model might offer the flexibility to adapt, providing a comprehensive solution that encompasses the strengths of both fine-tuning and RAG.

 

Evolution and future directions

As the landscape of artificial intelligence continues to evolve, so too do the methodologies and technologies at its core. Among these, Retrieval-Augmented Generation (RAG) and fine-tuning are experiencing significant advancements, propelling them toward new horizons of AI capabilities.

 

Advanced enhancements in RAG

Enhancing the retrieval-augmented generation pipeline

RAG has undergone significant transformations and advancements in each step of its pipeline. Each research paper on RAG introduces advanced methods to boost accuracy and relevance at every stage.

Let’s use the same query example from the basic RAG explanation: “What’s the latest breakthrough in renewable energy?”, to better understand these advanced techniques.

  • Pre-retrieval optimizations: Before the system begins to search, it optimizes the query for better outcomes. For our example, Query Transformations and Routing might break down the query into sub-queries like “latest renewable energy breakthroughs” and “new technology in renewable energy.” This ensures the search mechanism is fine-tuned to retrieve the most accurate and relevant information.

 

  • Enhanced retrieval techniques: During the retrieval phase, Hybrid Search combines keyword and semantic searches, ensuring a comprehensive scan for information related to our query. Moreover, by Chunking and Vectorization, the system breaks down extensive documents into digestible pieces, which are then vectorized. This means our query doesn’t just pull up general information but seeks out the precise segments of texts discussing recent innovations in renewable energy.

 

  • Post-retrieval refinements: After retrieval, Reranking and Filtering processes evaluate the gathered information chunks. Instead of simply using the top ‘k’ matches, these techniques rigorously assess the relevance of each piece of retrieved data. For our query, this could mean prioritizing a segment discussing a groundbreaking solar panel efficiency breakthrough over a more generic update on solar energy. This step ensures that the information used in generating the response directly answers the query with the most relevant and recent breakthroughs in renewable energy.

 

Through these advanced RAG enhancements, the system not only finds and utilizes information more effectively but also ensures that the final response to the query about renewable energy breakthroughs is as accurate, relevant, and up-to-date as possible.

Towards multimodal integration

RAG, traditionally focused on enhancing text-based language models by incorporating external data, is now also expanding its horizons towards a multimodal future.

Multimodal RAG integrates various types of data, such as images, audio, and video, alongside text, allowing AI models to generate responses that are not only informed by a vast array of textual information but also enriched by visual and auditory contexts.

This evolution signifies a move towards AI systems capable of understanding and interacting with the world more holistically, mimicking human-like comprehension across different sensory inputs.

 

Here’s your fundamental introduction to RAG

 

Advanced enhancements in finetuning

Parameter efficiency and LoRA

In parallel, fine-tuning is transforming more parameter-efficient methods. Fine-tuning large language models (LLMs) presents a unique challenge for AI practitioners aiming to adapt these models to specific tasks without the overwhelming computational costs typically involved.

One such innovative technique is Parameter-Efficient Fine-Tuning (PEFT), which offers a cost-effective and efficient method for fine-tuning such a model.

Techniques like Low-Rank Adaptation (LoRA) are at the forefront of this change, enabling fine-tuning to be accomplished with significantly less computational overhead. LoRA and similar approaches adjust only a small subset of the model’s parameters, making fine-tuning not only more accessible but also more sustainable.

Specifically, it introduces a low-dimensional matrix that captures the essence of the downstream task, allowing for fine-tuning with minimal adjustments to the original model’s weights.

This method exemplifies how cutting-edge research is making it feasible to tailor LLMs for specialized applications without the prohibitive computational cost typically associated.

 

The emergence of long-context LLMs

 

The evolution toward long context LLMs
The evolution toward long context LLMs – Source: Google Blog

 

As we embrace these advancements in RAG and fine-tuning, the recent introduction of Long Context LLMs, like Gemini 1.5 Pro, poses an intriguing question about the future necessity of these technologies. Gemini 1.5 Pro, for instance, showcases a remarkable capability with its 1 million token context window, setting a new standard for AI’s ability to process and utilize extensive amounts of information in one go.

The big deal here is how this changes the game for technologies like RAG and advanced fine-tuning. RAG was a breakthrough because it helped AI models to look beyond their training, fetching information from outside when needed, to answer questions more accurately. But now, with Long Context LLMs’ ability to hold so much information in memory, the question arises: Do we still need RAG anymore?

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

This doesn’t mean RAG and fine-tuning are becoming obsolete. Instead, it hints at an exciting future where AI can be both deeply knowledgeable, thanks to its vast memory, and incredibly adaptable, using technologies like RAG to fill in any gaps with the most current information.

In essence, Long Context LLMs could make AI more powerful by ensuring it has a broad base of knowledge to draw from, while RAG and fine-tuning techniques ensure that the AI remains up-to-date and precise in its answers. So the emergence of Long Context LLMs like Gemini 1.5 Pro does not diminish the value of RAG and fine-tuning but rather complements it.

 

 

Concluding Thoughts

The trajectory of AI, through the advancements in RAG, fine-tuning, and the emergence of long-context LLMs, reveals a future rich with potential. As these technologies mature, their combined interaction will make systems more adaptable, efficient, and capable of understanding and interacting with the world in ways that are increasingly nuanced and human-like.

The evolution of AI is not just a testament to technological advancement but a reflection of our continuous quest to create machines that can truly understand, learn from, and respond to the complex landscape of human knowledge and experience.

March 20, 2024

This is the first blog in the series of RAG and finetuning, focusing on providing a better understanding of the two approaches.

RAG and finetuning: You’ve likely seen these terms tossed around on social media, hailed as the next big leap in artificial intelligence. But what do they really mean, and why are they so crucial in the evolution of AI? 

To truly understand their significance, it’s essential to recognize the practical challenges faced by current language models, such as ChatGPT, renowned for their ability to mimic human-like text across essays, dialogues, and even poetry.

Yet, despite these impressive capabilities, their limitations became more apparent when tasked with providing up-to-date information on global events or expert knowledge in specialized fields.

Take, for instance, the FIFA World Cup.

 

Fifa World Cup Winner-Messi
Messi’s winning shot at the Fifa World Cup – Source: Economic Times

 

If you were to ask ChatGPT, “Who won the FIFA World Cup?” expecting details on the most recent tournament, you might receive an outdated response citing France as the champions despite Argentina’s triumphant victory in Qatar 2022.

 

ChatGPT's response to an inquiry of the winner of FIFA World Cup 2022
ChatGPT’s response to an inquiry about the winner of the FIFA World Cup 2022

 

Moreover, the limitations of AI models extend beyond current events to specialized knowledge domains. Try asking ChatGPT for treatments in neurodegenerative diseases, a highly specialized medical field. The model might offer generic advice based on its training data but lacks depth or specificity – and, most importantly, accuracy.

 

Symptoms of Parkinson's disease
Symptoms of Parkinson’s disease – Source: Neuro2go

 

GPT's response to inquiry about Parkinson's disease
GPT’s response to inquiry about Parkinson’s disease

 

These scenarios precisely illustrate the problem: a language model might generate text relevant to a past context or data but falls short when current or specialized knowledge is required.

 

Revisit the best large language models of 2023

 

Enter RAG and finetuning

RAG revolutionizes the way language models access and use information. Incorporating a retrieval step allows these models to pull in data from external sources in real-time. This means that when you ask a RAG-powered model a question, it doesn’t just rely on what it learned during training; instead, it can consult a vast, constantly updated external database to provide an accurate and relevant answer. This would bridge the gap highlighted by the FIFA World Cup example.

On the other hand, fine-tuning offers a way to specialize a general AI model for specific tasks or knowledge domains. Additional training on a focused dataset sharpens the model’s expertise in a particular area, enabling it to perform with greater precision and understanding.

This process transforms a jack-of-all-trades into a master of one, equipping it with the nuanced understanding required for tasks where generic responses just won’t cut it. This would allow it to perform as a seasoned medical specialist dissecting a complex case rather than a chatbot giving general guidelines to follow.

 

Curious about the LLM context augmentation approaches like RAG and fine-tuning and their benefits, trade-offs and use-cases? Tune in to this podcast with Co-founder and CEO of LlamaIndex now!


This blog will walk you through RAG and finetuning, unraveling how they work, why they matter, and how they’re applied to solve real-world problems. By the end, you’ll not only grasp the technical nuances of these methodologies but also appreciate their potential to transform AI systems, making them more dynamic, accurate, and context-aware.

 

Large language model bootcamp

 

Understanding the RAG LLM duo

What is RAG?

Retrieval-augmented generation (RAG) significantly enhances how AI language models respond by incorporating a wealth of updated and external information into their answers. It could be considered a model consulting an extensive digital library for information as needed.

Its essence is in the name:  Retrieval, Augmentation, and Generation.

Retrieval

The process starts when a user asks a query, and the model needs to find information beyond its training data. It searches through a vast database that is loaded with the latest information, looking for data related to the user’s query.

Augmentation

Next, the information retrieved is combined, or ‘augmented,’ with the original query. This enriched input provides a broader context, helping the model understand the query in greater depth.

Generation

Finally, the language model generates a response based on the augmented prompt. This response is informed by the model’s training and the newly retrieved information, ensuring accuracy and relevance.

 

Why use RAG?

Retrieval-augmented generation (RAG) brings an approach to natural language processing that’s both smart and efficient. It solved many problems faced by current LLMs, and that’s why it’s the most talked about technique in the NLP space.

Always up-to-date

RAG keeps answers fresh by accessing the latest information. RAG ensures the AI’s responses are current and correct in fields where facts and data change rapidly.

Sticks to the facts

Unlike other models that might guess or make up details (a ” hallucinations ” problem), RAG checks facts by referencing real data. This makes it reliable, giving you answers based on actual information.

Flexible and versatile

RAG is adaptable, working well across various settings, from chatbots to educational tools and more. It meets the need for accurate, context-aware responses in a wide range of uses, and that’s why it’s rapidly being adapted in all domains.

 

Explore the power of the RAG LLM duo for enhanced performance

 

Exploring the RAG pipeline

To understand RAG further, consider when you interact with an AI model by asking a question like “What’s the latest breakthrough in renewable energy?”. This is when the RAG system springs into action. Let’s walk through the actual process.

 

A visual representation of a RAG pipeline
A visual representation of an RAG pipeline

 

Query initiation and vectorization

  • Your query starts as a simple string of text. However, computers, particularly AI models, don’t understand text and its underlying meanings the same way humans do. To bridge this gap, the RAG system converts your question into an embedding, also known as a vector.
  • Why a vector, you might ask? Well, A vector is essentially a numerical representation of your query, capturing not just the words but the meaning behind them. This allows the system to search for answers based on concepts and ideas, not just matching keywords.

 

Searching the vector database

  • With your query now in vector form, the RAG system seeks answers in an up-to-date vector database. The system looks for the vectors in this database that are closest to your query’s vector—the semantically similar ones, meaning they share the same underlying concepts or topics.

 

  • But what exactly is a vector database? 
    • Vector databases defined: A vector database stores vast amounts of information from diverse sources, such as the latest research papers, news articles, and scientific discoveries. However, it doesn’t store this information in traditional formats (like tables or text documents). Instead, each piece of data is converted into a vector during the ingestion process.
    • Why vectors?: This conversion to vectors allows the database to represent the data’s meaning and context numerically or into a language the computer can understand and comprehend deeply, beyond surface-level keywords.
    • Indexing: Once information is vectorized, it’s indexed within the database. Indexing organizes the data for rapid retrieval, much like an index in a textbook, enabling you to find the information you need quickly. This process ensures that the system can efficiently locate the most relevant information vectors when it searches for matches to your query vector.

 

  • The key here is that this information is external and not originally part of the language model’s training data, enabling the AI to access and provide answers based on the latest knowledge.

 

Selecting the top ‘k’ responses

  • From this search, the system selects the top few matches—let’s say the top 5. These matches are essentially pieces of information that best align with the essence of your question.
  • By concentrating on the top matches, the RAG system ensures that the augmentation enriches your query with the most relevant and informative content, avoiding information overload and maintaining the response’s relevance and clarity.

 

Augmenting the query

  • Next, the information from these top matches is used to augment the original query you asked the LLM. This doesn’t mean the system simply piles on data. Instead, it integrates key insights from these top matches to enrich the context for generating a response. This step is crucial because it ensures the model has a broader, more informed base from which to draw when crafting its answer.

 

Generating the response

  • Now comes the final step: generating a response. With the augmented query, the model is ready to reply. It doesn’t just output the retrieved information verbatim. Instead, it synthesizes the enriched data into a coherent, natural-language answer. For your renewable energy question, the model might generate a summary highlighting the most recent and impactful breakthrough, perhaps detailing a new solar panel technology that significantly increases power output. This answer is informative, up-to-date, and directly relevant to your query.

 

Learn to build LLM applications

 

Understanding fine-tuning

What is fine-tuning?

Fine-tuning could be likened to sculpting, where a model is precisely refined, like shaping marble into a distinct figure. Initially, a model is broadly trained on a diverse dataset to understand general patterns—this is known as pre-training. Think of pre-training as laying a foundation; it equips the model with a wide range of knowledge.

Fine-tuning, then, adjusts this pre-trained model and its weights to excel in a particular task by training it further on a more focused dataset related to that specific task. From training on vast text corpora, pre-trained LLMs, such as GPT or BERT, have a broad understanding of language.

Fine-tuning adjusts these models to excel in targeted applications, from sentiment analysis to specialized conversational agents.

 

Why fine-tune?

The breadth of knowledge LLMs acquire through initial training is impressive but often lacks the depth or specificity required for certain tasks. Fine-tuning addresses this by adapting the model to the nuances of a specific domain or function, enhancing its performance significantly on that task without the need to train a new model from scratch.

 

The fine-tuning process

Fine-tuning involves several key steps, each critical to customizing the model effectively. The process aims to methodically train the model, guiding its weights toward the ideal configuration for executing a specific task with precision.

 

A look at the finetuning process
A look at the finetuning process

 

Selecting a task

Identify the specific task you wish your model to perform better on. The task could range from classifying emails into spam or not spam to generating medical reports from patient notes.

 

Choosing the right pre-trained model

The foundation of fine-tuning begins with selecting an appropriate pre-trained large language model (LLM) such as GPT or BERT. These models have been extensively trained on large, diverse datasets, giving them a broad understanding of language patterns and general knowledge.

The choice of model is critical because its pre-trained knowledge forms the basis for the subsequent fine-tuning process. For tasks requiring specialized knowledge, like medical diagnostics or legal analysis, choose a model known for its depth and breadth of language comprehension.

 

Preparing the specialized dataset

For fine-tuning to be effective, the dataset must be closely aligned with the specific task or domain of interest. This dataset should consist of examples representative of the problem you aim to solve. For a medical LLM, this would mean assembling a dataset comprised of medical journals, patient notes, or other relevant medical texts.

The key here is to provide the model with various examples it can learn from. This data must represent the types of inputs and desired outputs you expect once the model is deployed.

 

Reprocess the data

Before your LLM can start learning from this task-specific data, the data must be processed into a format the model understands. This could involve tokenizing the text, converting categorical labels into numerical format, and normalizing or scaling input features.

At this stage, data quality is crucial; thus, you’ll look out for inconsistencies, duplicates, and outliers, which can skew the learning process, and fix them to ensure cleaner, more reliable data.

After preparing this dataset, you divide it into training, validation, and test sets. This strategic division ensures that your model learns from the training set, tweaks its performance based on the validation set, and is ultimately assessed for its ability to generalize from the test set.

 

Read more about Finetuning LLMs

 

Adapting the model for the specific task

Once the pre-trained model and dataset are ready, you must better tailor the model to suit your specific task. An LLM comprises multiple neural network layers, each learning different aspects of the data.

During fine-tuning, not every layer is tweaked—some represent foundational knowledge that applies broadly. In contrast, the top or later layers are more plastic and customized to align with the specific nuances of the task. The architecture requires two key adjustments:

  • Layer freezing: To preserve the general knowledge the model has gained during pre-training, freeze most of its layers, especially the lower ones closer to the input. This ensures the model retains its broad understanding while you fine-tune the upper layers to be more adaptable to the new task.
  • Output layer modification: Replace the model’s original output layer with a new one tailored to the number of categories or outputs your task requires. This involves configuring the output layer to classify various medical conditions accurately for a medical diagnostic task.

 

Fine-tuning hyperparameters

With the model’s architecture now adjusted, we turn your attention to hyperparameters. Hyperparameters are the settings and configurations that are crucial for controlling the training process. They are not learned from the data but are set before training begins and significantly impact model performance. Key hyperparameters in fine-tuning include:

  • Learning rate: Perhaps the most critical hyperparameter in fine-tuning. A lower learning rate ensures that the model’s weights are adjusted gradually, preventing it from “forgetting” its pre-trained knowledge.
  • Batch size:  The number of training examples used in one iteration. It affects the model’s learning speed and memory usage.
  • Epochs: The number of times the entire dataset is passed through the model. Enough epochs are necessary for learning, but too many can lead to overfitting.

 

Training process

With the dataset prepared, the model was adapted, and the hyperparameters were set, so the model is now ready to be fine-tuned.

The training process involves repeatedly passing your specialized dataset through the model, allowing it to learn from the task-specific examples, it involves adjusting the model’s internal parameters, the weights, and biases of those fine-tuned layers so the output predictions get as close to the desired outcomes as possible.

This is done in iterations (epochs), and thanks to the pre-trained nature of the model, it requires fewer epochs than training from scratch.  Here is what happens in each iteration:

  • Forward pass: The model processes the input data, making predictions based on its current state.
  • Loss calculation: The difference between the model’s predictions and the actual desired outputs (labels) is calculated using a loss function. This function quantifies how well the model is performing.
  • Backward pass (Backpropagation): The gradients of the loss for each parameter (weight) in the model are computed. This indicates how the changes being made to the weights are affecting the loss. 
  • Update weights: Apply an optimization algorithm to update the model’s weights, focusing on those in unfrozen layers. This step is where the model learns from the task-specific data, refining its predictions to become more accurate.

A tight feedback loop where you incessantly monitor the model’s validation performance guides you in preventing overfitting and determining when the model has learned enough. It gives you an indication of when to stop the training.

 

Evaluation and iteration

After fine-tuning, assess the model’s performance on a separate validation dataset. This helps gauge how well the model generalizes to new data. You do this by running the model against the test set—data it hadn’t seen during training.

Here, you look at metrics appropriate to the task, like BLEU and ROUGE for translation or summarization, or even qualitative evaluations by human judges, ensuring the model is ready for real-life application and isn’t just regurgitating memorized examples.

If the model’s performance is not up to par, you may need to revisit the hyperparameters, adjust the training data, or further tweak the model’s architecture.

 

For medical LLM applications, it is this entire process that enables the model to grasp medical terminologies, understand patient queries, and even assist in diagnosing from text descriptions—tasks that require deep domain knowledge.

 

You can read the second part of the blog series here – RAG vs finetuning: Which is the best tool?

 

Key takeaways

Hence, this provides a comprehensive introduction to RAG and fine-tuning, highlighting their roles in advancing the capabilities of large language models (LLMs). Some key points to take away from this discussion can be put down as:

  • LLMs struggle with providing up-to-date information and excelling in specialized domains.
  • RAG addresses these limitations by incorporating external information retrieval during response generation, ensuring informative and relevant answers.
  • Fine-tuning refines pre-trained LLMs for specific tasks, enhancing their expertise and performance in those areas.
March 18, 2024