fbpx
Learn to build large language model applications: vector databases, langchain, fine tuning and prompt engineering. Learn more

AI tools

Data Science Dojo
Ayesha Saleem
| January 5

AI code generation models are advanced artificial intelligence systems that can automatically generate code based on user prompts or existing codebases. These models leverage machine learning and particularly deep learning algorithms to understand coding patterns, languages, and structures. Their key benefits include:

Why use AI tools for code generation?

  1. Enhanced Efficiency: They can automate routine and repetitive coding tasks, significantly reducing the time programmers spend on such tasks. This leads to faster code production and allows developers to concentrate on more complex and creative aspects of programming.
  2. Improved Code Quality: By enforcing consistency and adhering to best coding practices, AI code generation models can improve the overall quality of code. This is beneficial for both seasoned developers and newcomers to the field, making the development process more accessible.
  3. Consistency and Teamwork: These models help maintain a standard coding style, which is especially useful in team environments. A consistent codebase improves comprehension and collaboration among team members.
  4. Empowering Non-Developers: AI code generators can empower non-developers and people new to coding by simplifying the code creation process, making development more inclusive.
  5. Streamlining Development: By generating code for machine learning models and other complex systems, AI code generation tools can streamline the development process, enabling programmers to create robust applications with less manual coding effort.

 

 

 

 

Read more about AI tools used for code generation

 

Use Code Llama for coding

Code Llama is an artificial intelligence tool designed to assist software developers in their coding tasks. It serves as an asset in developer workflows by providing capabilities such as code generation, completion, and testing. Essentially, it’s like having a virtual coding assistant that can understand programming language and natural language prompts to perform coding-related tasks efficiently.

 

Code Llama is an advanced tool designed to help with programming tasks. It’s an upgraded form of Llama 2, fine-tuned with a lot more programming examples. This has given it the ability to better understand and write code.

You can ask Code Llama to do a coding task using simple instructions, like asking for a piece of code that gives you the Fibonacci sequence.

Not only does it help write new code, but it can also finish incomplete code and fix errors in existing code. Code Llama is versatile, too, working with several commonly used programming languages such as Python, C++, Java, PHP, JavaScript (via Typescript), C#, and command-line scripts in Bash​​​​​​.

 

 

Generative AI coding tools and their features

  1. ChatGPT:
    • Features: Text-based AI capable of generating human-like responses, creating content, and even programming assistance.
    • Examples: Chatbots for customer service, assistance in writing emails or articles, and generating code snippets.
  2. AlphaCode:
    • Features: Developed by DeepMind, it specializes in writing computer programs at a competitive level.
    • Examples: Participating in coding competitions and solving complex algorithmic problems.
  3. GitHub Copilot:
    • Features: An AI pair programmer that suggests whole lines or blocks of code as you type.
    • Examples: Autocompleting code for software development projects in various languages.
  4. Duet AI:
    • Features: Collaborative AI with capabilities to understand context and provide real-time assistance.
    • Examples: Assisting in creative tasks, problem-solving, and learning new topics.
  5. GPT-4:
    • Features: An advanced version of the GPT series with better understanding and generation of text.
    • Examples: Creating more accurate and contextually relevant articles, essays, and summaries.
  6. Bard:
    • Features: An AI model that can generate content and is known for its storytelling capabilities.
    • Examples: Generating stories, narratives, and creative content for entertainment or marketing.
  7. Wells Fargo’s Predictive Banking Feature:
    • Features: Uses AI to predict customer needs and offer personalized banking advice.
    • Examples: Proactively suggesting financial actions to customers, like saving tips or account management.
  8. RBC Capital Markets:
    • Features: Employs AI for better financial analysis and predictions in the capital market sector.
    • Examples: Analyzing market trends and providing investment insights.

Each of these tools uses advanced algorithms to process vast amounts of data, learn from interactions, and create outputs that can mimic human creativity and analytical skills. They are employed across various industries to automate tasks, enhance productivity, and foster innovation​

 

Learn to build LLM applications

 

What are text-to-code AI models?

Text-to-code AI models are advanced machine learning systems that translate natural language instructions into executable computer code. These models are designed to understand programming logic and syntax from human-readable descriptions and generate corresponding code in various programming languages.

This technology leverages Natural Language Processing (NLP) and machine learning algorithms, often trained on vast datasets of code examples from open-source projects and other resources.

Examples of Text-to-Code AI Models

Codex by OpenAI: Codex powers the popular GitHub Copilot and is capable of understanding and generating code in multiple languages. It’s designed to improve the productivity of experienced programmers by suggesting complete lines of code or functions based on the comments or partial code they’ve written.

For example, if a developer comments, “Parse CSV file and return a list of dictionaries,” Codex can generate a Python function that accomplishes this task.

Starcoder: This is another example of a text-to-code model that can interpret instructions for a specific coding task and provide the necessary code snippet. It’s particularly useful for educational purposes, helping learners understand how their high-level requirements translate into actual code.

DeepMind’s AlphaCode: Launched by DeepMind, AlphaCode can write computer programs at a competitive level. It participated in coding competitions and performed at the level of an average human competitor, showcasing its ability to understand problem statements and create functional code solutions.

 

Large language model bootcamp

 

Optimize your workflow of code generation

The integration of AI tools in code generation is a transformative shift in software development. By reducing manual coding efforts and automating repetitive tasks, these tools allow developers to concentrate on innovation and problem-solving.

As AI continues to advance, we can anticipate even more sophisticated and nuanced code generation, making the future of programming an exciting realm to watch.

Author image ayesha
Ayesha Saleem
| December 4

Artificial Intelligence (AI) is rapidly transforming our world, and 2023 saw some truly groundbreaking AI inventions. These inventions have the potential to revolutionize a wide range of industries and make our lives easier, safer, and more productive.

1. Revolutionizing photo editing with Adobe Photoshop

Imagine being able to effortlessly expand your photos or fill in missing parts—that’s what Adobe Photoshop’s new tools, Generative Expand and Generative Fill, do. More information

 

Adobe Photoshop Generative Expand and Generative Fill: The 200 Best Inventions of 2023 | TIME

 

They can magically add more to your images, like people or objects, or even stretch out the edges to give you more room to play with. Plus, removing backgrounds from pictures is now a breeze, helping photographers and designers make their images stand out.

2. OpenAI’s GPT-4: Transforming text generation

OpenAI’s GPT-4 is like a smart assistant who can write convincingly, translate languages, and even answer your questions. Although it’s a work in progress, it’s already powering some cool stuff like helpful chatbots and tools that can whip up marketing content.

 

open ai - Large Language Models

 

In collaboration with Microsoft, they’ve also developed a tool that turns everyday language into computer code, making life easier for software developers.

 

 

3. Runway’s Gen-2: A new era in film editing

Filmmakers, here’s something for you: Runway’s Gen-2 tool. This tool lets you tweak your video footage in ways you never thought possible. You can alter lighting, erase unwanted objects, and even create realistic deepfakes.

 

Runway AI: What Is Gen-2 and How Can I Use It? - WGMI Media

 

Remember the trailer for “The Batman”? Those stunning effects, like smoke and fire, were made using Gen-2.

 

Read more about: How AI is helping content creators 

 

4. Ensuring digital authenticity with Alitheon’s FeaturePrint

In a world full of digital trickery, Alitheon’s FeaturePrint technology helps distinguish what’s real from what’s not. It’s a tool that spots deepfakes, altered images, and other false information. Many news agencies are now using it to make sure the content they share online is genuine.

 

Home

 

 

5. Dedrone: Keeping our skies safe

Imagine a system that can spot and track drones in city skies. That’s what Dedrone’s City-Wide Drone Detection system does.

 

Dedrone News - Dedrone Introduces Next Gen Anti-Drone Sensor

 

It’s like a watchdog in the sky, helping to prevent drone-related crimes and ensuring public safety. Police departments and security teams around the world are already using this technology to keep their cities safe.

 

6. Master Translator: Bridging language gaps

Imagine a tool that lets you chat with someone who speaks a different language, breaking down those frustrating language barriers. That’s what Master Translator does.

 

Best Master Degrees in Translation 2024

It handles translations across languages like English, Spanish, French, Chinese, and Japanese. Businesses are using it to chat with customers and partners globally, making cross-cultural communication smoother.

 

Learn about AI’s role in education

 

7. UiPath Clipboard AI: Streamlining repetitive tasks

Think of UiPath Clipboard AI as your smart assistant for boring tasks. It helps you by pulling out information from texts you’ve copied.

 

Why RPA UiPath is unique RPA software? | Zarantech

 

This means it can fill out forms and put data into spreadsheets for you, saving you a ton of time and effort. Companies are loving it for making their daily routines more efficient and productive.

 

8. AI Pin: The future of smart devices

Picture a tiny device you wear, and it does everything your phone does but hands-free. That’s the AI Pin. It’s in the works, but the idea is to give you all the tech power you need right on your lapel or collar, possibly making smartphones a thing of the past!

 

Humane AI Pin is not just another device. | by José Ignacio Gavara | Nov, 2023 | Medium

 

9. Phoenix™: A robot with a human touch

Sanctuary AI’s Phoenix™ is like a robot from the future. It’s designed to do all sorts of things, from helping customers to supporting healthcare and education. While it’s still being fine-tuned, Phoenix™ could be a game-changer in many industries with its human-like smarts.

Clipboard AI - Copy Paste Automation | UiPath

 

 

10. Be My AI: A visionary assistant

Imagine having a digital buddy that helps you see the world, especially if you have trouble with your vision. Be My AI, powered by advanced tech like GPT-4, aims to be that buddy.

 

Be My AI Mentioned Amongst TIME Best Inventions of 2023

 

It’s being developed to guide visually impaired people in their daily activities. Though it’s not ready yet, it could be a big leap forward in making life easier for millions.

 

Large language model bootcamp

Impact of AI inventions on society

The impact of AI on society in the future is expected to be profound and multifaceted, influencing various aspects of daily life, industries, and global dynamics. Here are some key areas where AI is likely to have significant effects:

  1. Economic Changes: AI is expected to boost productivity and efficiency across industries, leading to economic growth. However, it might also cause job displacement in sectors where automation becomes prevalent. This necessitates a shift in workforce skills and may lead to the creation of new job categories focused on managing, interpreting, and leveraging AI technologies.
  2. Healthcare Improvements: AI has the potential to revolutionize healthcare by enabling personalized medicine, improving diagnostic accuracy, and facilitating drug discovery. AI-driven technologies could lead to earlier detection of diseases and more effective treatment plans, ultimately enhancing patient outcomes.
  3. Ethical and Privacy Concerns: As AI becomes more integrated into daily life, issues related to privacy, surveillance, and ethical use of data will become increasingly important. Balancing technological advancement with the protection of individual rights will be a crucial challenge.
  4. Educational Advancements: AI can personalize learning experiences, making education more accessible and tailored to individual needs. It may also assist in identifying learning gaps and providing targeted interventions, potentially transforming the educational landscape.
  5. Social Interaction and Communication: AI could change the way we interact with each other, with an increasing reliance on virtual assistants and AI-driven communication tools. This may lead to both positive and negative effects on social skills and human relationships.

 

Learn to build custom large language model applications today!                                                

 

  1. Transportation and Urban Planning: Autonomous vehicles and AI-driven traffic management systems could revolutionize transportation, leading to safer, more efficient, and environmentally friendly travel. This could also influence urban planning and the design of cities.
  2. Environmental and Climate Change: AI can assist in monitoring environmental changes, predicting climate patterns, and developing more sustainable technologies. It could play a critical role in addressing climate change and promoting sustainable practices.
  3. Global Inequalities: The uneven distribution of AI technology and expertise might exacerbate global inequalities. Countries with advanced AI capabilities could gain significant economic and political advantages, while others might fall behind.
  4. Security and Defense: AI will have significant implications for security and defense, with the development of advanced surveillance systems and autonomous weapons. This raises important questions about the rules of engagement and ethical considerations in warfare.
  5. Regulatory and Governance Challenges: Governments and international bodies will face challenges in regulating AI, ensuring fair competition, and preventing monopolies in the AI space. Developing global standards and frameworks for the responsible use of AI will be essential.

 

Overall, the future impact of AI on society will depend on how these technologies are developed, regulated, and integrated into various sectors. It presents both opportunities and challenges that require thoughtful consideration and collaborative effort to ensure beneficial outcomes for humanity.

Fiza Author image
Fiza Fatima
| October 15

Generative AI for art is rapidly transforming the creative process, and art generation is no exception. AI-powered tools can now create stunning visuals that were once unimaginable, and they are becoming increasingly accessible to artists of all levels. 

This blog post will share top hacks for generating art using the latest AI tools like Midjourney, DALL.E, Stable Diffusion, Adobe Firefly, etc. in 2023. We will cover everything from understanding the different types of AI tools available to refining and enhancing AI-generated art. 

Large language model bootcamp

Tools of the trade 

Several new models have emerged in recent months, including DALL.E 3, MidJourney, Stable Diffusion, and Adobe Firefly. These models are all capable of generating realistic and creative images from text prompts, but they have different strengths and weaknesses. 

  • DALL.E 3: DALL.E 3 is a diffusion model developed by OpenAI. It is known for its ability to generate high-quality and realistic images from a wide variety of text prompts. DALL.E 3 can also generate images in a variety of different artistic styles.  

Here’s a quick comparison of the image quality of DALL.E 2 and DALL.E 3. Which one do you prefer? 

 

DALLE 2 vs DALLE 3
DALLE 2 vs DALLE 3

 

  • MidJourney: MidJourney is another diffusion model, developed by a small team of researchers and engineers. MidJourney is known for its ability to generate creative and imaginative images. It is also good at generating images in a variety of different artistic styles. 

Here’s an art piece named “Théâtre D’opéra Spatial” produced through MidJourney which took home the blue ribbon in the fair’s contest for emerging digital artists. Read more 

Midjourney

 

  • Stable diffusion: Stable Diffusion is an open-source diffusion model developed by Stability AI. It is known for its speed and its ability to generate high-quality images from text prompts. Stable Diffusion is also good at generating images in a variety of different artistic styles. 

Here’s a difference in image quality between Stable Diffusion 1 and Stable Diffusion 2 respectively. 

stable diffusion 1 vs stable diffusion 2
Stable diffusion 1 vs Stable diffusion 2

 

  • Adobe Firefly: It is a generative AI platform that enables users to create images, videos, and text from text prompts. What sets Adobe apart is its ability to be edited in real-time in specific areas. This allows users to create and refine images with a high degree of precision and control. 

Here’s a quick tutorial on how you can use Adobe Firefly to generate versatile images 

 

 

Ultimately, the best model for you will depend on your specific needs and requirements. If you need the highest quality images and don’t mind waiting a bit longer, then DALL.E 3 or MidJourney is a good option. If you need a fast and easy-to-use model, then Stable Diffusion is a good option. Lastly, if you want high customizability, we’d recommend you use Adobe Firefly. 

 

Get Started with Generative AI                                    

 

Hacks for AI art generation 

The AI art generation is different because you need to have some knowledge of art beforehand to generate specific outcomes. Here are some prompting techniques that will help you get better images out of the tools you use!  

 

Tips for prompting techniques
Tips for prompting techniques

 

These techniques will enable you to write prompts aligned with the outputs you desire. In addition, there are some general best practices that you should be aware of to create the best art pieces.  

  • Use specific and descriptive prompts: The more specific and descriptive your prompt, the better the AI will be able to understand what you want to create. For example, instead of prompting the AI to generate a “cat,” try prompting it to generate a “black and white tabby cat sitting on a red couch.” 
  • Experiment with different art styles: Most AI art generation tools offer a variety of art styles to choose from. Experiment with different styles to find the one that best suits your needs. 
  • Combine AI with traditional techniques: AI art generation tools can be used in conjunction with traditional art techniques to create hybrid creations. For example, you could use an AI tool to generate a background for a painting that you are creating. 
  • Use negative keywords: If there are certain elements that you don’t want in the image, you can use negative keywords to exclude them. For example, if you don’t want the cat in your image to be wearing a hat, you could use the negative keyword “hat.” 
  • Choose the right tool for your project: Consider the specific needs of your project when choosing an AI art generation tool. For example, if you need to generate a realistic image of a person, you will want to choose a tool that is specialized in generating realistic images of people. 
  • Use batch processing: If you need to generate multiple images, use batch processing to generate them all at once. This can save you a lot of time and effort. 
  • Use templates: If you need to generate images in a specific format or style, create templates that you can use. This will save you time and effort from having to create the same prompts or edit the same images repeatedly. 
  • Automate tasks: If you find yourself performing the same tasks repeatedly, try to automate them. This will free up your time so that you can focus on more creative and strategic tasks.

 

 Read more about: Impact of Generative AI in software development industry

 

Start using Generative AI for art generation now  

Generative AI is democratizing art creation, making it accessible and inspiring for artists of all levels. The possibilities are boundless, and with the right tools and techniques, you can craft the artwork of your dreams. As technology and creativity continue to converge, the future of the art generation is limited only by our imagination. 

Author image - Ayesha
Ayesha Saleem
| October 3

Code generation is one of the most exciting new technologies in software development. AI tools can now generate code that is just as good, or even better, than human-written code. This has the potential to revolutionize the way we write software.

(more…)

Author image - Ayesha
Ayesha Saleem
| June 22

Artificial intelligence (AI) is rapidly transforming the way we work. From automating repetitive tasks to generating creative content, work-related AI tools are widely helping businesses of all sizes to be more productive and efficient.

 

work-related AI tools
Top 18 AI tools for workplace

 

Here are some of the most exciting AI tools that can revolutionize your work environment:

  1. Bard is a knowledge assistant developed by Google that uses LLM-based technology to help you with tasks such as research, writing, and translation. [Free to use]  
  2. ChatGPT is a versatile knowledge assistant that can be used for a variety of purposes, including customer service, marketing, and sales. [Free to use] 
  3. ChatSpot is a content and research assistant from HubSpot that can help you with marketing, sales, and operational tasks. [Free to use] 
  4. Docugami is an AI-driven business document management system that can help you organize, store, and share documents more effectively. [Free trial available] 
  5. Einstein GPT is a content, insights, and interaction assistant from Salesforce that can help you improve your customer interactions. [Free trial available] 
  6. Google Workspace AI Features are a suite of generative AI capabilities that are integrated into Google Workspace products, such as Docs, Sheets, and Slides. [Free to use] 
  7. HyperWrite is a business writing assistant that can help you create clear, concise, and persuasive content. [Free trial available] 
  8. Jasper for Business is a smart writing creator that can help you maintain brand consistency for external content. [Free trial available] 
  9. Microsoft 365 Copilot/Business Chat are AI-enabled content creation and contextual user data-driven business chatbots. [Free trial available] 
  10. Notably is an AI-assisted business research platform that can help you find and understand relevant information more quickly. [Free trial available] 
  11. Notion AI is a content and writing assistant that is tailored for business applications. [Free trial available] 
  12. Olli is an AI-generated analytics and business intelligence dashboard that is engineered for enterprise use. [Free trial available] 
  13. Poe by Quora is a chatbot knowledge assistant that leverages Anthropic’s cutting-edge AI models. [Free trial available] 
  14. Rationale is an AI-powered business decision-making tool that can help you to make more informed decisions. [Free trial available] 
  15. Seenapse is an AI-supported ideation tool that is designed specifically for business purposes. [Free trial available] 
  16. Tome is an AI-driven tool that empowers users to create dynamic PowerPoint presentations. [Free trial available] 
  17. WordTune is a versatile writing assistant with broad applications. [Free trial available] 
  18. Writer is an AI-based writing assistant that is designed to enhance writing proficiency and productivity. [Free trial available] 

These are just a few of the many AI tools that are available to businesses today. As AI continues to evolve, we can expect to see even more innovative tools that can help us to work more efficiently and effectively. 

 

Are AI tools a threat to the workforce? 

AI tools can be a threat to the workforce in some cases, but they can also create new jobs and opportunities. It is important to consider the following factors when assessing the impact of AI on the workforce:   

The type of work:

Some types of work are more susceptible to automation than others. For example, jobs that involve repetitive tasks or that require a high level of accuracy are more likely to be automated by AI. 

The skill level of the workforce:

Workers with low-level skills are more likely to be displaced by AI than workers with high-level skills. This is because AI tools are often able to perform tasks that require a high level of accuracy and precision, which are skills that are often possessed by workers with high-level education and training. 

The pace of technological change:

The pace of technological change is also a factor to consider. If AI tools are adopted rapidly, it could lead to a significant number of job losses in a short period of time. However, if AI tools are adopted more gradually, it will give workers more time to adapt to the changing landscape and acquire the skills they need to succeed in the new economy. 

Overall, the impact of AI on the workforce is complex and uncertain. There is no doubt that AI will displace some jobs, but it will also create new jobs and opportunities. It is important to be proactive and prepare for the changes that AI will bring.   

Mitigate the negative impact of AI tools

Here are some things that can be done to mitigate the negative impact of AI on the workforce: 

Upskill and reskill workers:

Workers need to be prepared for the changes that AI will bring. This means upskilling and reskilling workers so that they have the skills they need to succeed in the new economy. 

Create new jobs:

AI will also create new jobs. It is important to create new jobs that are specifically designed for the skills that AI will automate. 

Provide social safety nets:

If AI does lead to significant job losses, it is important to provide social safety nets to help those who are displaced. This could include things like unemployment benefits, retraining programs, and job placement services. 

By taking these steps, we can ensure that AI is used to benefit the workforce, not to displace it. 

Who can benefit from using AI tools? 

AI tools can benefit businesses of all sizes, from small businesses to large corporations. They can be used by a wide range of employees, including marketing professionals, sales representatives, customer service representatives, and even executives. 

What are the benefits of using work-related AI tools? 

There are many benefits to using AI tools, including: 

  • Increased productivity: AI tools can help you automate repetitive tasks, freeing up your time to focus on more strategic work. 
  • Improved accuracy: AI tools can help you to produce more accurate results, reducing the risk of errors. 
  • Enhanced creativity: AI tools can help you to generate new ideas and insights, stimulating your creativity. 
  • Improved customer service: AI tools can help you to provide better customer service, by answering questions more quickly and accurately. 
  • Increased efficiency: AI tools can help you streamline your operations, making your business more efficient. 

Conclusion 

AI tools are powerful tools that can help businesses to improve their productivity, accuracy, creativity, customer service, and efficiency. As AI continues to evolve, we can expect to see even more innovative tools that can help businesses succeed in the digital age. Learn more about Generative AI here.

Shehryar Author - Data Science
Shehryar Mallick
| April 26

This blog explores the amazing (Artificial Intelligence) AI technology called ChatGPT that has taken the world by storm and tries to unravel the underlying phenomenon that makes up this seemingly complex technology.

What is ChatGPT? 

ChatGPT was officially launched on 30th November 2022 by OpenAI and quickly amassed a huge following not even in a week. Just to give you an idea it took Facebook around 10 months to gain 1 million followers ChatGPT did it in 5 days. So, the question that might arise in your minds my dear readers is why? Why did it gain so much popularity? What purpose does it serve? How does it work? Well, fret not we are here to answer those questions in this blog. 

Let us begin by understanding what ChatGPT is, ChatGPT is a language model that uses reinforcement learning from human feedback (RLHF) to keep on learning and fine-tuning its responses, it can answer a wide variety of questions within a span of a few minutes, help you in numerous tasks by giving you a curated, targeted response rather than vague links in a human-like manner. 

Understanding Chat GPT
Understanding ChatGPT

Be it writing a code or searching for something chances are ChatGPT already has the specific thing you are looking for. This brings us to our next question; how does it work? Is there magic behind it? No, it is just the clever use of machine learning and an abundance of use cases and data that OpenAI created something as powerful and elegant as ChatGPT. 

The architecture of Chat GPT 

ChatGPT is a variant of transformer-based neural network architecture, introduced in a paper by the name “Attention is all you need” in 2017, transformer architecture was specifically designed for NLP (Natural Language Processing) tasks and prevails as one of the most used methods to date. 

A quick overview of the architecture involves its usage of self-attention mechanisms which allow the model to focus on specific words and phrases when generating text, rather than processing the entire input as a single unit. It consists of multiple layers, each of which contains a multi-head self-attention mechanism and a fully connected neural network.

Also, it includes a mechanism called positional encoding which lets the model understand the relative position of the words in the input. This architecture has proven to be amazingly effective in natural language processing tasks such as text generation, language translation, and text summarization.

Following are the different layers that are involved in the architecture of ChatGPT 

  • An embedding layer: this layer is responsible for converting the input words into a dense vector representation that the model can process. 
  • Multiple layers of self-attention: these layers are responsible for analyzing the input and calculating a set of attention weights, which indicate which parts of the input are most important for the current task. 
  • Multi-head attention: this layer is responsible for concatenating the outputs of multiple self-attention layers and then linearly transforming the resulting concatenated vectors 
  • Multiple layers of fully connected neural networks: these layers are responsible for transforming the output of the attention layers into a final representation that can be used for the task at hand. 
  • Output layer: this layer is responsible for generating the final output of the model, which can be a probability distribution over the possible next words in a sentence or a classification label for a given input text
     


Flow of ChatGPT

After getting a basic understanding of what ChatGPT is and its internal architecture we will now see the flow of ChatGPT from the training phase to answering a user prompt. 

1. Data collection:

Around 300 billion words were gathered for the training of ChatGPT, the sources for the data mainly included books, articles, and websites. 

2. Pre-Processing:

Once the data was collected it needed to be preprocessed so that it could be used for training. Techniques involved in preprocessing are stopped word removal, removal of duplicate data, lowercasing, removing special characters, tokenization, etc. 

3. Training:

The pre-processed data is used to train ChatGPT, which is a variant of the transformer architecture. During training, the model learns the patterns and relationships between words, phrases, and sentences. This process can take several days to several weeks depending on the size of the dataset and the computational resources available. 

4. Fine-tuning:

Once the pre-training is done, the model can be fine-tuned on a smaller, task-specific data set to improve its performance on specific natural language processing tasks. 

5. Inference:

The trained and fine-tuned model is ready to generate responses to prompts. The input prompt is passed through the model, which uses its pre-trained weights and the patterns it learned during the training phase to generate a response. 

6. Output:

The model generates a final output, which is a sequence of words that forms the answer to the prompt. 

Strengths of the AI technology of ChatGPT

  • ChatGPT is a large language model that has been trained on a massive dataset of text data, allowing it to understand and generate human-like text. 
  • It can perform a wide range of natural language processing tasks such as text completion, question answering, and conversation simulation. 
  • The transformer-based neural network architecture enables ChatGPT to understand the context of the input and generate a response accordingly. 
  • It can handle large input sequences and generate coherent and fluent text; this makes it suitable for long-form text generation tasks. 
  • ChatGPT can be used for multiple languages and can be fine-tuned for different dialects and languages. 
  • It can be easily integrated with other NLP tasks, such as named entity recognition, sentiment analysis, and text summarization 
  • It can also be used in several applications like chatbots, virtual assistants, and language model-based text generation tasks.
     

Weaknesses of ChatGPT

  • ChatGPT is limited by the information contained in the training data and does not have access to external knowledge, which may affect its ability to answer certain questions. 
  • The model can be exposed to biases and stereotypes present in the training data, so the generated text should be used with caution. 
  • ChatGPT’s performance on languages other than English may be limited. 
  • Training and running ChatGPT requires significant computational resources and memory. 
  • ChatGPT is limited to natural language processing tasks and cannot perform tasks such as image or speech recognition. 
  • Lack of common-sense reasoning ability: ChatGPT is a language model and lacks the ability to understand common-sense reasoning, which can make it difficult to understand some context-based questions. 
  • Lack of understanding of sarcasm and irony: ChatGPT is trained on text data, which can lack sarcasm and irony, so it might not be able to understand them in the input. 
  • Privacy and security concerns: ChatGPT and other similar models are trained on large amounts of text data, which may include sensitive information, and the model’s parameters can also be used to infer sensitive information about the training data. 

 

Storming the Internet – What’s Chat GPT-4?

The latest development in artificial intelligence (AI) has taken the internet by storm. OpenAI’s new language model, GPT-4, has everyone talking. GPT-4 is an upgrade from its predecessor, GPT-3, which was already an impressive language model. GPT-4 has improved capabilities, and it is expected to be even more advanced and powerful.

With GPT-4, there is excitement about the potential for advancements in natural language processing, which could lead to breakthroughs in many fields, including medicine, finance, and customer service. GPT-4 could enable computers to understand natural language more effectively and generate more human-like responses.

A glimpse into Auto GPT

However, it is not just GPT-4 that is causing a stir. Other AI language models, such as Auto GPT, are also making waves in the tech industry. Auto GPT is a machine learning system that can generate text on its own without any human intervention. It has the potential to automate content creation for businesses, making it a valuable tool for marketers.

Auto chat is particularly useful for businesses that need to engage with customers in real-time, such as customer service departments. By using auto chat, companies can reduce wait times, improve response accuracy and provide a more personalized customer experience.

Want to start your EDA journey, well you can always get yourself registered at Data Science Bootcamp.

In a nutshell

So just to recap, ChatGPT is not a black box of unknown mysteries but rather a carefully crafted state-of-the-art artificial intelligence algorithm that has been rigorously trained with a variety of scenarios in order to cover all the possible use cases. Even though it can do wonders as we have seen already there is still a long way to go as there are still potential problems that need to be inspected and worked on. To get the latest news on astounding technological advancements and other associated fields visit Data Science Dojo to keep yourself posted.   

 

ChatGPT is scary good. We are not far from dangerously strong AI – Elon Musk  

Ali Haider - Author
Ali Haider Shalwani
| February 18

This blog outlines a collection of 12 must-have AI tools that can assist with day-to-day activities and make tasks more efficient and streamlined.  

The development of Artificial Intelligence has gone through several phases over the years. It all started in the 1950s and 1960s with rule-based systems and symbolic reasoning.

In the 1970s and 1980s, AI research shifted to knowledge-based systems and expert systems. In the 1990s, machine learning and neural networks emerged as popular techniques, leading to breakthroughs in areas such as speech recognition, natural language processing, and image recognition. 

Large language model bootcamp

In the 2000s, the focus on Artificial Intelligence shifted to data-driven AI and big data analytics.   Today, in 2023, AI is transforming industries such as healthcare, finance, transportation, and entertainment, and its impact is only expected to grow in the future.  

Adapting to Artificial Intelligence is becoming increasingly important for companies and individuals due to its numerous benefits. It can help automate mundane and repetitive tasks, freeing up time for more complex and creative work. It can also enable businesses to make more accurate and informed decisions by quickly analyzing large amounts of data.

In today’s fast-paced and competitive environment, companies and individuals who fail to adapt to Artificial Intelligence may find themselves falling behind in terms of efficiency and innovation. Therefore, it is essential for companies and individuals to embrace AI and use it to their advantage.  

AI Artificial intelligence tools - must-have AI tools
Top AI tools to must learn in 2023 – Data Science Dojo

 

Here’s a list of top 12 AI tools that can be useful for different individual and business work:  

 

  1. ChatGPT is a chatbot created by OpenAI that uses natural language processing to generate human-like conversations.  
  2. Ximilar is an image recognition and analysis tool that uses machine learning to identify objects and scenes in images and videos.  
  3. Moodbit is an emotional intelligence tool that uses natural language processing to analyze and measure emotional language in text, helping businesses improve communication and employee well-being.  
  4. Knoyd is a predictive analytics platform that uses machine learning to provide data-driven insights and predictions to businesses.  
  5. Chorus.AI is a conversation analysis tool that uses natural language processing to analyze sales calls and provide insights on customer sentiment, product feedback, and sales performance.  
  6. Receptivity is a personality analysis tool that uses natural language processing to analyze language patterns and provide insights into personality traits and emotional states.  
  7. Paragone is a text analysis tool that uses natural language processing to extract insights and trends from large volumes of unstructured text data.  
  8. Ayasdi is a data analysis and visualization tool that uses machine learning to uncover hidden patterns and insights in complex data sets.  
  9. Arria NLG is a natural language generation tool that uses machine learning to generate human-like language from data, enabling businesses to automate report writing and other written communication.  
  10. Cognitivescale is a cognitive automation platform that uses machine learning to automate complex business processes, such as customer service and supply chain management.  
  11. Grammarly is a writing assistant that uses AI to detect grammar, spelling, and punctuation errors in your writing, as well as suggest a more effective vocabulary and writing style.
  12. Hootsuite Insights is a social media monitoring tool that helps businesses monitor social media conversations and track brand reputation, customer sentiment, and industry trends. 

 

Read more about –> ChatGPT Enterprise: All you need to know about OpenAI’s enterprise-grade version of ChatGPT

 

Unravel the modern business challenges with must-have AI tools

The development of Artificial Intelligence has rapidly advanced over the years, leading to the creation of a wide range of powerful tools that can be used by individuals and businesses alike. These tools have proven to be incredibly useful in a variety of tasks, from data analysis to streamlining processes and boosting productivity. As we look toward the future, it is clear that the role of AI will continue to expand, leading to new and exciting opportunities for businesses of all kinds.  

If you are interested in learning more about the latest advancements in Artificial Intelligence and data, be sure to check out the upcoming future of AI and Data conference on March 1st and 2nd. With over 20 industry experts, this conference is a must-attend event for anyone looking to stay at the forefront of this rapidly evolving field. Register today and start exploring the limitless possibilities of Artificial Intelligence and data! 

 

Learn to build LLM applications                                          

Related Topics