Interested in a hands-on learning experience for developing LLM applications?
Join our LLM Bootcamp today and Get 30% Off for a Limited Time!

azure ml

Business data is becoming increasingly complex. The amount of data that businesses collect is growing exponentially, and the types of data that businesses collect are becoming more diverse. This growing complexity of business data is making it more difficult for businesses to make informed decisions.

To address this challenge, businesses need to use advanced data analysis methods. These methods can help businesses to make sense of their data and to identify trends and patterns that would otherwise be invisible.

In recent years, there has been a growing interest in the use of artificial intelligence (AI) for data analysis. AI tools can automate many of the tasks involved in data analysis, and they can also help businesses to discover new insights from their data.

Top AI tools for data analysis

AI Tools for Data Analysis
AI Tools for Data Analysis

1. TensorFlow

First on the AI tool list, we have TensorFlow which is an open-source software library for numerical computation using data flow graphs. It is used for machine learning, natural language processing, and computer vision tasks. TensorFlow is a powerful tool for data analysis, and it can be used to perform a variety of tasks, including:

  • Data cleaning and preprocessing
  • Feature engineering
  • Model training and evaluation
  • Model deployment

TensorFlow is a popular AI tool for data analysis, and it is used by a wide range of businesses and organizations. Some of the benefits of using TensorFlow for data analysis include:

  • It is a powerful and flexible tool that can be used for a variety of tasks.
  • It is open-source, so it is free to use and modify.
  • It has a large and active community of users and developers.

Use cases and success stories

TensorFlow has been used in a variety of successful data analysis projects. For example, TensorFlow was used by Google to develop its self-driving car technology. TensorFlow was also used by Netflix to improve its recommendation engine.

2. PyTorch

PyTorch is another open-source software library for numerical computation using data flow graphs. It is similar to TensorFlow, but it is designed to be more Pythonic. PyTorch is a powerful tool for data analysis, and it can be used to perform a variety of tasks, including:

  • Data cleaning and preprocessing
  • Feature engineering
  • Model training and evaluation
  • Model deployment

PyTorch is a popular tool for data analysis, and it is used by a wide range of businesses and organizations. Some of the benefits of using PyTorch for data analysis include:

  • It is a powerful and flexible tool that can be used for a variety of tasks.
  • It is open-source, so it is free to use and modify.
  • It has a large and active community of users and developers.

Use cases and success stories

PyTorch has been used in a variety of successful data analysis projects. For example, PyTorch was used by OpenAI to develop its GPT-3 language model. PyTorch was also used by Facebook to improve its image recognition technology.

3. Scikit-learn

Scikit-learn is an open-source machine learning library for Python. It is one of the most popular machine learning libraries in the world, and it is used by a wide range of businesses and organizations. Scikit-learn can be used for a variety of data analysis tasks, including:

  • Classification
  • Regression
  • Clustering
  • Dimensionality reduction
  • Feature selection

Leveraging Scikit-learn in data analysis projects

Scikit-learn can be used in a variety of data analysis projects. For example, Scikit-learn can be used to:

  • Classify customer churn
  • Predict product sales
  • Cluster customer segments
  • Reduce the dimensionality of a dataset
  • Select features for a machine-learning model

Notable features and capabilities

Scikit-learn has several notable features and capabilities, including:

  • A wide range of machine-learning algorithms
  • A simple and intuitive API
  • A large and active community of users and developers
  • Extensive documentation and tutorials

Benefits for data analysts

Scikit-learn offers several benefits for data analysts, including:

  • It is a powerful and flexible tool that can be used for a variety of tasks.
  • It is easy to learn and use, even for beginners.
  • It has a large and active community of users and developers who can provide support and help.
  • It is open-source, so it is free to use and modify.

Explore the top 10 machine learning demos and discover cutting-edge techniques that will take your skills to the next level.

Case studies highlighting its effectiveness

Scikit-learn has been used in a variety of successful data analysis projects. For example, Scikit-learn was used by Spotify to improve its recommendation engine. Scikit-learn was also used by Netflix to improve its movie recommendation system.

4. RapidMiner

RapidMiner is a commercial data science platform that can be used for a variety of data analysis tasks. It is a powerful AI tool that can be used to automate many of the tasks involved in data analysis, and it can also help businesses discover new insights from their data.

Applying RapidMiner in data analysis workflows

RapidMiner can be used in a variety of data analysis workflows. For example, RapidMiner can be used to:

  • Clean and prepare data
  • Build and train machine learning models
  • Deploy machine learning models
  • Explore and visualize data

Essential features and functionalities

RapidMiner has a number of essential features and functionalities, including:

  • A visual drag-and-drop interface
  • A wide range of data analysis tools
  • A comprehensive library of machine learning algorithms
  • A powerful model deployment engine

Examples showcasing successful data analysis with RapidMiner

RapidMiner has been used in a variety of successful data analysis projects. For example, RapidMiner was used by Siemens to improve its predictive maintenance system. RapidMiner was also used by the World Bank to develop a poverty index.

5. Microsoft Azure Machine Learning

Microsoft Azure Machine Learning is a cloud-based platform that can be used for a variety of data analysis tasks. It is a powerful tool that can be used to automate many of the tasks involved in data analysis, and it can also help businesses discover new insights from their data.

Harnessing Azure ML for data analysis tasks

Azure ML can be used for a variety of data analysis tasks, including:

  • Data preparation
  • Model training
  • Model evaluation
  • Model deployment

Key components and functionalities

Azure ML has a number of key components and functionalities, including:

  • A machine learning studio
  • A model registry
  • A model deployment service
  • A suite of machine learning algorithms

Benefits and advantages

Azure ML offers a number of benefits and advantages, including:

  • It is a powerful and easy-to-use tool that can be used for a variety of tasks.
  • It is a cloud-based platform, so it can be accessed from anywhere.
  • It has a wide range of machine

6: Tableau

Tableau is a data visualization software platform that can be used to create interactive dashboards and reports. It is a powerful tool that can be used to explore and understand data, and it can also be used to communicate insights to others.

Utilizing Tableau for data analysis and visualization

Tableau can be used for a variety of data analysis and visualization tasks. For example, Tableau can be used to:

  • Explore data
  • Create interactive dashboards
  • Share insights with others
  • Automate data analysis tasks

Important features and capabilities

Tableau has a number of important features and capabilities, including:

  • A drag-and-drop interface
  • A wide range of data visualization tools
  • A powerful data analysis engine
  • A collaborative platform

Advantages and benefits

Tableau offers a number of advantages and benefits, including:

  • It is a powerful and easy-to-use tool that can be used for a variety of tasks.
  • It has a wide range of data visualization tools.
  • It can be used to automate data analysis tasks.
  • It is a collaborative platform.

Showcasing impactful data analysis with Tableau

Tableau has been used to create a number of impactful data analyses. For example, Tableau was used by the World Health Organization to track the spread of Ebola. Tableau was also used by the Los Angeles Police Department to improve crime prevention.

Wrapping up

In this blog post, we have reviewed the top 6 AI tools for data analysis. These tools offer a variety of features and capabilities, so the best tool for a particular project will depend on the specific requirements of the project.

However, all of these AI tools can be used to help businesses make better decisions by providing insights into their data. As AI continues to evolve, we can expect to see even more powerful and sophisticated tools that can help us analyze data more efficiently and effectively. When selecting the right AI tool for data analysis, it is important to consider the following factors:

  • The type of data that you will be analyzing
  • The tasks that you need the tool to perform
  • The level of expertise of your team
  • Your budget
July 17, 2023

Drag and drop tools have revolutionized the way we approach machine learning (ML) workflows. Gone are the days of manually coding every step of the process – now, with drag-and-drop interfaces, streamlining your ML pipeline has become more accessible and efficient than ever before.

Machine learning is a powerful tool that helps organizations make informed decisions based on data. However, building and deploying machine learning models can be a complex and time-consuming process. This is where drag-and-drop tools come in. These tools provide a visual interface for building machine learning pipelines, making the process easier and more efficient for data scientists. 

Below, we will cover the different components of a machine learning pipeline, including data inputs, preprocessing steps, and models, and how they can be easily connected using drag-and-drop tools. We will also examine the benefits of using these tools, including ease of use, improved accuracy, and faster deployment. 

 

Drag and drop tool for ML pipelines
Enhance ML efficiency with drag and drop tools

What are drag and drop tools?

Drag and drop tools are user-friendly software that allows users to build machine learning pipelines by simply dragging and dropping components onto a canvas. These tools let users visualize the workflow and track the pipeline’s progress. The benefits of using drag-and-drop tools in machine learning pipelines include quick model development, improved accuracy, and improved productivity. 

How do drag and drop tools work? 

Drag and drop tools for machine learning pipelines work by providing a visual interface for building and managing the pipeline. The interface typically consists of a canvas on which components, such as data inputs, preprocessing steps, and models, are represented as blocks that can be dragged and dropped into place. The user can then easily connect these blocks to define the flow of the pipeline. 

The process of building a machine learning pipeline with a drag-and-drop tool usually starts with selecting the data source. Once the data source is selected, the user can then add preprocessing steps to clean and prepare the data. The next step is to select the machine learning algorithm to be used for the model. Finally, the user can deploy the model and monitor its performance. 

One of the main benefits of using drag-and-drop tools in machine learning pipelines is the ease of use. These tools are designed to be user-friendly and do not require any coding skills, making it easier for data scientists to build models quickly and efficiently.

Explore the top 10 machine learning demos and discover cutting-edge techniques that will take your skills to the next level.

Additionally, the visual representation of the pipeline provided by these tools makes it easier to identify potential errors and improve the accuracy of the models. In summary, drag-and-drop tools provide a visual and intuitive way to build and manage machine learning pipelines, making the process easier and more efficient for data scientists. 

Popular drag and drop tools for ML pipeline  

Here are some popular drag-and-drop tools for machine learning pipelines:

Drag and drop tools for streamlining your ML pipeline
Drag and drop tools for streamlining your ML pipeline – Data Science Dojo

1. Data Robot 

Data Robot is an automated machine learning platform that allows users to build, test, and deploy ML models with just a few clicks. It offers a wide range of pre-built models, which can be easily selected and configured using the drag-and-drop interface. Data Robot also provides visualizations and diagnostic tools to help users understand their models’ performance. 

2. H2O.ai 

H2O.ai is an open-source platform that provides drag-and-drop functionality for building ML pipelines. It offers a wide range of pre-built models, including deep learning and gradient boosting, that can be easily selected and configured using the drag-and-drop interface. H2O.ai also provides various visualizations and diagnostic tools to help users understand their models’ performance. 

3. RapidMiner 

RapidMiner is a data science platform that provides a drag-and-drop interface for building ML pipelines. It offers a wide range of pre-built models, including deep learning and gradient boosting, that can be easily selected and configured using the drag-and-drop interface. RapidMiner also provides a variety of visualizations and diagnostic tools to help users understand their models’ performance. 

4. KNIME 

KNIME is an open-source platform that provides drag-and-drop functionality for building ML pipelines. It offers a wide range of pre-built models, including deep learning and gradient boosting, that can be easily selected and configured using the drag-and-drop interface. KNIME also provides a variety of visualizations and diagnostic tools to help users understand their models’ performance. 

5. Azure ML

Azure ML Designer is a visual interface in Microsoft Azure Machine Learning Studio that allows data scientists and developers to create and deploy machine learning models without having to write code. It provides a drag-and-drop interface for building workflows that include data preparation, feature engineering, model training, and deployment. Azure ML Designer supports popular machine learning algorithms and libraries and allows users to easily track experiments, monitor model performance, and collaborate with other team members. 

Case Studies: Success stories of using drag and drop tools  

There are numerous success stories of organizations using drag-and-drop tools to improve their machine-learning pipelines. These success stories range from improved accuracy to increased productivity. For instance, one company could build and deploy models in a fraction of the time it took them before, while another company could improve its accuracy. These case studies provide valuable insights into the real-life benefits of using drag-and-drop tools in machine learning pipelines. 

Comparison of drag and drop tools for ML pipelines 

When evaluating drag-and-drop tools for machine learning pipelines, it is important to consider factors such as features, user experience, and cost. A comparison of these factors can help organizations figure out which tool is the best fit for their needs. Some of the popular drag-and-drop tools in the market include Alteryx, Knime, and DataRobot. 

Benefits of drag and drop tools for ML Pipelines 

  1. Easy to use: These tools are very user-friendly, as they allow users to create pipelines without writing code. This makes it easier for non-technical users to get involved in the machine learning process and speeds up development for technical users.
  2. Faster Development: By using drag and drop tools, users can quickly and easily create pipelines, which speeds up the development process. This is especially important for machine learning projects, where the iterative process of testing and adjusting models is critical to success.
  3. Improved Collaboration: Drag and Drop tools make it easier for teams to collaborate on machine learning projects. With visual pipelines, it is easier for team members to understand each other’s work and make changes together.
  4. Better Model Management: Drag and Drop Tools provide a visual representation of pipelines, which makes it easier to manage and maintain machine learning models. This helps to ensure that models are consistent, accurate, and up-to-date.

Conclusion 

In conclusion, drag-and-drop tools for machine learning pipelines supply a simple and intuitive way for data scientists to build, manage, and deploy models. These tools offer many benefits, including quick model development, improved accuracy, and improved productivity. When evaluating drag-and-drop tools, it is important to consider factors such as features, user experience, and cost. With the growing popularity of drag-and-drop tools, organizations can expect to see a continued improvement in their machine learning pipelines.

April 3, 2023

This tutorial will walk you through building a classification model in Azure ML Studio by using the same process as a traditional data mining framework.

Using Azure ML studio (Overview)

We will use the public Titanic dataset for this tutorial. From the dataset, we can build a predictive model that will correctly classify whether you will live or die based upon a passenger’s demographic features and circumstances.

Would you survive the Titanic disaster?

About the data

We use the Titanic dataset in our data science bootcamp, and have found it is one of the few datasets that is good for both beginners and experts because its complexity scales up with feature engineering. There are numerous public resources to obtain the Titanic dataset, however, the most complete (and clean) version of the data can be obtained from Kaggle, specifically their “train” data.

The train Titanic data has 891 rows, each one pertaining to a passenger on the RMS Titanic on the night of its disaster. The dataset also has 12 columns that each record an attribute about each occupant’s circumstances and demographics: user ID, passenger class, age, gender, name, number of siblings and spouses aboard, number of parents and children aboard, fare price, ticket number, cabin number, their port of embarkation, and whether they survived the ordeal or not.

For additional reading, a repository of biographies pertaining to everyone aboard the RMS Titanic can be found here (complete with pictures).

Preprocessing & data exploration

Drop low-value columns

Begin by identifying columns that add little-to-no value for predictive modeling. These columns will be dropped.

The first, most obvious candidate to be dropped is PassengerID. No information was provided to us as to how these keys were derived. Therefore, the keys could have been completely random and may add false correlations or noise to our model.

The second candidate for removal is the passenger Name column. Normally, names can be used to derive missing values of gender, but the gender column holds no empty values. Thus, this column is of no use to us, unless we use it to engineer another name column.

The third candidate for removal will be the Ticket column, which represents the ticket serial ID. Much like PassengerID, information is not readily available as to how these ticket strings were derived. Advanced users may dig into historical documents to investigate how the travel agencies set up their ticket names, perform a clustering analysis, or bin the ticket values. Those techniques are out of the scope of this experiment.

The last candidate to be dropped will be Cabin, which is the cabin number where the passenger stayed. Although this column may hold value when binned, there are 147 missing values in this column (~21% of the data). Advanced users may cluster the cabins by letters, or can dig down into the grit of the actual RMS Titanic ship schematics to derive useful features such as cabin distance from hull breach or average elevation from sea level.

Select-Columns
Tutorial: Building a Classification Model in Azure ML

Define categorical variables

We must now define which values are non-continuous by casting them as categorical. Mathematical approaches for continuous and non-continuous values differ greatly. For example, if we graph the “Survived” column now, it will look funny because it would try to account for the range between “0” and “1”. However, being partially alive in this case would be absurd. Categorical values are looked at independently of one another as “choices” or “options” rather than as a numeric range.

For a quick (but not exhaustive) exercise to see if something should be categorical, simply ask, “Would a decimal interval for this value make sense?”

Continuous-vs-non-continuous
Difference between Continuous and Non-Continuous Variable

From this exercise, the columns that should be cast as categorical are: Survived, Pclass, Sex, and Embarked. The trickiest of these to determine might have been Pclass because it’s a numerical value that goes from 1 to 3. However, it does not really make sense to have a 2.5 Class between the second class and third class. Also, the relationship or “distance” between each interval of PClass is not explicit.

To cast these columns, drag in the “Edit Metadata” module. Specify the columns to be cast, then change the “Categorical” parameter to “Make categorical”.

Make-Categorical
Building a Classification Model in Azure ML

Clean missing data in Azure ML

Most algorithms are unable to account for missing values and some treat it inconsistently from others. To address this, we must make sure our dataset contains no missing, “null,” or “NA” values. There are many ways to address missing values. We will cover three: replacement, exclusion, and deletion.

We used exclusion already when we made a conscious decision not to use “Cabin” attributes by dropping the column entirely.

Replacement is the most versatile and preferred method because it allows us to keep our data. It also minimizes collateral damage to other columns as a result of one cell’s bad behavior. In replacement, numerical values can easily be replaced with statistical values such as mean, median, or mode. The median is usually preferred for machine learning because it preserves the distribution of the data and is less affected by outliers. However, the median will skew and overload your frequencies, meaning it’ll mess with your bar graph but not your box plot.

We will cover deletion later in this section.

Now we can hunt for missing values. Drag in a “Summarize Data” module and connect it to your “Edit Metadata” module. Run the experiment and visualize the summary output. You will get a column summarizing the “missing value count” for each attribute. At this point, there are 177 missing values for “Age” and 2 missing values for “Embarked.”

Summarize-Data
Dataset Results
clean-missing-data
Cleaning Missing Data

Looking at the metadata of “Age” reveals that it is a “numeric” type. As such, we can easily replace all missing values of age with the median. In this case, each missing value will be replaced with “28.”

Embarked is a bit trickier since it is a categorical string. Usually, the holes in categorical columns can be filled with a placeholder value. In this case, there are only 2 missing values so it would not make much sense to add another categorical value to “Embarked” in the form of S, C, Q, or U (for unknown) just to accommodate 2 rows. We can stand to lose 0.2% of our data by simply dropping these rows. This is an example of deletion.

azure-ml-tutorial--metadata-on-age
Building a Predictive Model using Azure ML – Statistics

To clean missing values in Azure ML, use the “Clean Missing Data” module. This module will apply a single blanket operation to the selected features.  First, we start by having one “Clean Missing Data” module to replace all missing numeric instances with the median.  To select all the numeric columns, we select “Column Type” and “Numeric” under “Launch Column Selector” in the Properties of “Clean Missing Data.”

This will target only the “Age” column since it is the only numeric column with missing values. After the data goes through the module, there should only be 2 missing values left in the entire dataset, which is in “Embarked” column.  Then, we add another “Clean Missing Data” module, set it to drop the missing rows in order to remove the 2 missing values of “Embarked.”

Clean-missing-values
Azure ML – Cleaning Missing Data

Specify a response class

We must now directly tell Azure ML which attribute we want our algorithm to train to predict by casting that attribute as a “label.” Do this by dragging in a “Edit Metadata” module. Use the column selector to specify “Survived” and change the “Fields” parameter to “Labels.” A dataset can only have 1 label at a time for this to work. Our model is now ready for machine learning!

response-class
Azure ML – Specifying a Response Class

Partition and withhold data

It is extremely important to randomly partition your data prior to training an algorithm to test the validity and performance of your model. A predictive model is worthless to us if it can only accurately predict known values. Withhold data represents data that the model never saw when it was training its algorithm. This will allow you to score the performance of your model later to evaluate how well the model can predict future or unknown values.

Drag in a “Split Data” module. It is usually industry practice to set a 70/30 split. To do this, set “fraction of rows in the first output dataset” to be 0.7. 70% of the data will be randomly shuffled into the left output node, while the remaining 30% will be shuffled into the right output node.

spit-data-azure-machinelearning
Azure ML – Splitting Data

Select an algorithm

First, we must identify what kind of machine learning problem this is: classification, regression, clustering, etc. Since the response class is a categorical value, or “0” or “1”, for survived or deceased, we can tell that it is a classification problem. Specifically, we can tell that it is a two-class, or binary, classification problem because there are only two possible results: survived or deceased. Luckily, Azure ML ships with many two-class classification algorithms. Without going into algorithm-specific implementations, this problem lends itself well to decision forest and decision tree because the predictor classes are both numeric and categorical. Pick one algorithm (any two-class algorithm will work).

decision-tree-azure-ml
Selecting an Algorithm in Azure ML

Train your model

Drag in a “Train Model” module and connect your algorithm to it. Connect your training data (the 70%) to the right input of the “Train Model” module. To score the model, drag in a “Score Model” module. Connect the “Train Model” to the left input node of the “Score Model,” and the 30% withhold data to the right input node of the “Score Model.” Finally, to evaluate the performance of model, drag in an “Evaluate Model” module and connect its left input to the output of the “Score Model.”

Run your model

azure-ml-tutorial--training-your-model
Running your Model in Azure ML

Evaluate your model

If you visualize your “Evaluate Model” module after running your model, you see a staggering number of metrics. Each machine learning problem will have its own unique goals, thus having different priorities when evaluating “good” or “bad” performance. As a result, each problem will also optimize different metrics.

For our experiment, we chose to maximize the RoC AuC because this is a low-risk situation where the outcomes of false negatives or false positives do not have different weights.

RoC AuCs will vary slightly because of the randomized split. The default parameters of our two-class boosted decision tree yielded a RoC AuC of 0.832. This is a fair-performing model. By fine-tuning the parameters, we can further increase the performance of the model.

Evaluationofmodel
Evaluating your Model in Azure ML

Which metric to optimize?

  1. RoC AuC: Overall Performance
  2. Precision: Relevance
  3. Recall: Thoroughness
  4. Accuracy: Correctness

Beginner’s guide to RoC AuC

  • o.9~1 = Suspiciously Good
  • 0.8~0.9 = Fair
  • 0.7~0.8 = Decent Model
  • 0.5~0.6 = Worthless Model

Compare your model

How would our model shape up against another algorithm? Let’s find out. Drag in a “Two-Class Decision Forest” module. Copy and paste your “Train Model” module and your “Score Model” module. Reroute the input of the newly-created “Train Model” module to the decision forest. Attach the output of the newly-created “Score Model” module to the right input node of the “Evaluate Model” module. Now we can compare the performance of two machine learning models that were trained separately.

compare your model
Comparing your Model in Azure ML

Both models performed fairly (~0.81 RoC AuC each). The boosted decision tree got a slightly higher RoC AuC overall, but the two models were close enough to be considered tied in terms of performance. As a tiebreaker, we can look at other metrics such as accuracy, precision, and recall. Using those metrics, we found that the boosted decision tree had lower accuracy, precision, and recall when compared to the two-class decision forest. If we were to select a winning model right now, it would probably be the two-class decision forest.

Other video tutorials

You can watch this series of videos to dive deeper into Azure Machine Learning:

June 13, 2022

Related Topics

Statistics
Resources
rag
Programming
Machine Learning
LLM
Generative AI
Data Visualization
Data Security
Data Science
Data Engineering
Data Analytics
Computer Vision
Career
AI