until LLM Bootcamp: In-Person (Seattle) and Online Learn more


Working within the Data Science industry has made me religiously follow a few data science blogs that I use to stay up to date with industry trends, learn new concepts, and understand the vernacular.

As a new member, these three things were originally hard for me to grasp until I started reading everything I could. These are the data science blogs I follow, and you should too.

Data science blogs I follow:



R bloggers logo
R-bloggers logo

R-bloggers began when creator, Tal Galili, was fed-up with trying to find blogs about R. Instead of continuing his search, Tal created a site that pulls feeds from contributing blogs. R-bloggers “is a blog aggregator of content contributed by bloggers who write about R”. If your blog is all about R, you can create an RSS feed and contribute to the “R blogosphere”. This aggregator is a great place to find different blogs, especially if you’re new to the industry (like me).

Towards Data Science

Towards Data Science Logo

Whether you enjoy data science as a hobby or a profession, you should be reading Towards Data Science (TDS). In October 2016 TDS joined Medium with the goal of “gathering good posts and distributing them to a broader audience”. Now, Towards Data Science includes 1,500 authors from around the world. TDS offers contributors an editorial team to help raise the quality of posts being submitted. While reading an article on TDS, you know you’re getting high-quality content you can trust.


Kdnuggets logo

KDnuggets is another staple of data science blogs. The site has received so many impressive awards, I couldn’t decide which ones to list. You’ll have to settle with viewing them yourself.

It may seem messy when you first visit, but, much like original Reddit users, That’s the way I like it, and the 500,000 monthly visitors would probably agree. Posts range from courses and tutorials to news, meetings, and opinions. Like TDS, KDnuggets offers high-quality content you can trust to help you learn.


Entrepreneur logo

Entrepreneur is different than the three blogs above. Instead of focusing solely on anything within data science, it keeps its content specifically about how data science and big data affect entrepreneurship and small business. This blog is great for entrepreneurs and small business owners who want to absorb the concepts into their businesses. The market for using data science to make data-driven business decisions is growing and should not be overlooked.


DataFloq Logo

One of my favorite things about DataFloq is how easy it is to navigate the site. It has a list of tags at the top of the Articles page that makes sorting through the posts very easy. It’s also easy to find events going on around the world.

The blog itself mostly focuses on big data, artificial intelligence, and new technologies. I usually find myself cruising through the AI or IoT tags.  There’s always a new article to read about one of those topics. You can also see how many views the article has received without having to click on it. I use it to gauge what the quality of the content’s like within the post. The higher the views, typically the higher the quality will be. If you’re looking for anything to do with new, emerging technologies, I suggest browsing DataFloq.



Dataconomy logo

I use Dataconomy almost strictly for learning about the trends within the blockchain. It isn’t updated as frequently as DataFloq, or the other above blogs, but it still gives helpful insights into what is trending within the data science industry.

Dataconomy prides itself in having a global network of contributors that don’t just look at the major tech companies. Authors are encouraged to find new and promising tech startups that will take the world by storm.

Who do you follow?

Is there a data science blog you think I have to read? Let me know! Follow the discussion link below to start a conversation. I’m always looking for new blogs to read to continue my data science education and learn new industry trends.

June 14, 2022

Related Topics

Machine Learning
Generative AI
Data Visualization
Data Security
Data Science
Data Engineering
Data Analytics
Computer Vision