Learn to build large language model applications: vector databases, langchain, fine tuning and prompt engineering. Learn more

become a data scientist

Data Science Dojo
Emily Joe
| April 12

Established organizations are transforming their focus towards digital transformation. So, data science applications are increased across different industries to encourage innovation and automation in the business’s operational structure. Due to this, the need and demand for skilled data scientists are increased. Thus, if you want to make a career in data science, it is essential to understand the perks of data scientists and how they can usher in organizational change.

Data scientists are prevalent in every field, whether it is medical, financial, automation, or healthcare. Seeing this growth makes various job opportunities available and can be a bright career option for professionals and newbies. Thus, for more profound knowledge, we listed perks that will help you to become a data scientist  

Perks of a data scientist
Perks of a data scientist

Best perks of being a data scientist 

If you want to know the benefits of data science professionals, then we have compiled some of the perks below.  

1. Opportunity to work with big brands 

Data scientists are in higher demand and also have the opportunity to work with big brands like Amazon, Uber, and Apple. Amazon companies need data science to sell and recommend products to their customers. The data used by Amazon Company comes from its extensive user base information. In addition, Apple Company uses customer data to bring new product features. Uber’s surfer pricing policy is the finest example of how large companies use data science.  

Read about how to prepare for your upcoming data science interview

2. Versatility 

The data scientist profession’s demand is in every sector, whether banking, finance, healthcare, or marketing. They also work in government, non – governmental, NGOs, and academics. Few of the specializations tie you to a particular business or function. However, the opposite is true with data science; it might be your ticket to any endeavor that uses data to drive decisions.  

3. Bridge between business and IT sector 

Data scientists are not only into coding and shooting their fingers at keyboard keys like any other software engineer. A data scientist is neither the one who manages the entire business requirement in the organization. But they act as a bridge between both sectors and build a better future for them. Yes, by using coding knowledge, a data scientist can provide better solutions to companies. So, a data scientist combines business analytics and IT schemes, making jobs beautiful. 

4. Obtain higher positions 

Most entry-level positions within large corporations or government institutions can take many years to reach a place of influence over macro-level decision-making initiatives. 

Many corporate workers cannot even imagine influencing significant investments in resources and new campaigns. This is typically reserved for high-ranking executives or expensive consultants from prominent consultancy companies. All data professionals have many opportunities to grow their careers. 

5. Career security 

While technology changes in the tech industry, data science will remain constant. Every company will have to collect data and use it for performance. New models will be developed for improved performance. This field is not going anywhere. Data science will grow in its ways, but data scientists may continue learning and expanding their knowledge by using new techniques.  

Data science will not die, but it will likely become more attractive over time because of its ever-present need. Data scientists with a wide range of skills might need to grow their knowledge and adapt to the changing market. 

7. Proper training and certificate course 

Unlike any IT job, a data scientist does not need to create useless study materials for beginners. However, various courses in the data science field are backed by experts with solid experience and knowledge in this field. That’s why learning data science courses and visualization will help them to obtain more knowledge and skills about this sector.  

Data scientist certification holder has the chance to receive pay 58% raise in comparison to non–certified professionals who can get a 35% chance. Thus, the road to getting a promotion and resume shortlisting is higher for certified professionals. But, it never means that self–taught data scientists can’t grow.  

8. Most in-demand jobs of the century 

According to Harvard Business Review Article, data science jobs are the sexiest in the 21st century. Each organization and brand need a data scientist to work with a massive data collection. Every industry requires them to play and wrangle with data and extract valuable insight for their business’s bright future. Therefore, to predict and take better steps ahead, every company is hiring data scientists, which makes jobs best for career growth.  

9. Working flexibility 

When you ask data scientists what they love most about being a data science professional, the answer is freedom. Data science is not tied to any particular industry. These data gurus have the advantage of working with technology, which means they can be a part of something with great potential. You can choose to work on projects that interest your heart. You are making a difference in thousands of lives through your data science work. 


Unarguably, a data scientist is one of the fastest growing careers that attract any youth towards it. If you search the internet, millions of job opportunities are available for data scientist roles. So, if you plan to make a career, all these perks are available for you and many more. The Data Science career is hot and will remain for many years.  

Data Science Dojo
Rebecca Merrett
| June 10

We invest in up-and-coming data scientists who have the potential to grow into data science master Jedi.

We don’t hire data scientists, we build them

At Data Science Dojo, we invest in up-and-coming data scientists who have the potential to grow into master Jedi with the breadth and depth to work on almost any data problem. We often find people who have a solid knowledge of data science but lack the real-world experience to know how to tackle complex problems that go beyond the textbook.

That’s why we are launching a new program to coach up-and-coming data scientists and create masters in the field. Instead of forever searching for the ‘ data scientist unicorn’, we decided to work with great potential. Investing in great potential now can lead to greater outcomes in the future.

To be considered worthy of free training, exposure to real-world data science problems, and in-person mentoring, while getting paid, you need to have the following attributes:

  • Solid understanding of math/stats, including machine learning concepts and key algorithms, probability, data distributions, linear regression, statistical inference, hypothesis testing, and confidence intervals.
  • Solid coding skills, including the ability to adhere to best practices, formats, and presentations.
  • Strong written and verbal communication skills, including the ability to write technical content, communicate insights, and present in front of an audience.
  • Ability to hack away at different APIs, tools, and functions.
  • Ability to wrangle data to prepare it for analysis.
  • Ability to handle ambiguity in project requirements.

Getting Started: Become a data science trainee and learn some real-world data science skills

The critical mass of skills required to be an effective data scientist is non-trivial. Motivated young professionals attend course after course only to realize that real-world problems are different from online courses. We have faced this problem while hiring and accepted that ‘real-world data scientists’ are hard-to-find commodities. Even if you have finished 100 MOOC courses on data science, we will ask you to put those skills to practice during your first six months at Data Science Dojo. As our data scientist trainee, you will just learn at our expense.  You will be ramping up on different aspects of becoming a great data scientist:

  1. Variety of datasets: A wide variety of datasets are available in the public domain for data scientists to practice their skills. You will be exposed to some of the available datasets in increasing order of complexity. You can find a list of the existing datasets here. [Add link here]
  2. Tools and SDKs: Which one is better: R or Python? Should I use AWS, Azure, or GCP? How about SageMaker, TensorFlow, and Cafe2? You will get a working knowledge of most of these tools while building models or gathering actionable insights on a variety of different datasets.
  3. Machine Learning and Modelling Chops: Data science is not just about model building. Real-world data science problems follow what we call the 80/20 rule. For any non-trivial, real-world problem, you will end up spending more than 80% of your time acquiring, cleaning, processing, storing data, and extracting meaningful features. Only after that, you will be able to gather any actionable insights out of data. Under the supervision of seasoned data scientists, you will be asked to take on a variety of tasks in the data science lifecycle. You will learn the following skills on datasets of varying difficulties.
  • Data Exploration, Visualization, and Feature Engineering: Can you slice and dice data so that it makes sense? You will be learning some of the common data exploration, and visualization packages. You will be learning different techniques of feature engineering on a variety of data sets.
  • Machine Learning: Anyone can build a model that can differentiate between Cats and Dogs using an off-the-shelf library, but can you build a model? You will have a solid understanding of when to use supervised vs. unsupervised learning or how ranking and regression are related.

Techniques: No two problems are the same. You will be working on a variety of datasets with problems ranging from classification to clustering, regression to ranking, and outlier detection to dimensionality reduction. Whether Parametric or non-parametric; discriminative or generative; algebraic or probabilistic – all techniques are fair game because in the real-world you need a whatever it takes and can-do mindset.

Progress to associate data scientists: Step out of the bubble and into the real world

Real-world problems are not like off-the-shelf data sets. There are many aspects of the data that are not known. Many times, you need to think about what data is needed and hunt until you find it. You’ll be working on a variety of real-world problems using structured and unstructured data sources.

1. Critical thinking and presentation

We’ve often seen that business leaders and data scientists don’t see eye to eye in a given scenario. Bridging the gap between both has been the most difficult aspect of providing a solution. As an associate data scientist, you will assist experienced data scientists on the team and learn to bridge the gap between the two. You will learn what to expect from a customer and how to present the solution at its best expectation while being ethical.

  • The ‘good enough’ answer is never the right answer, think curiously about the problem and develop your intuition
  • Consider the credibility of your data, not all sources are dependent
  • Get ready to embrace complex situations, data security might be a concern, you might get encrypted data, or you may need to synthesize data due to data privacy policies.
  • Trick-or-treat, we often don’t get to take all the candy home. Trade-offs are a necessary evil, you will learn to make balanced decisions.

2. Teamwork and collaboration

Building a data science solution is not a one-man job. You will be working with a team of data scientists to develop modeling/data strategies. Essentially, collaborating with your team members to develop use cases with the business goal in mind, using collaboration and tracking tools like ‘git’ for source control and Jira for task management to set up a healthy workflow for team contributions. Working in a team setting is crucial to developing a viable solution that runs on data with measurable impact. You’ll learn to implement machine learning algorithms at scale and configure end-to-end data pipelines on cloud services like Azure, AWS, and GCP.

Additionally, as a data scientist in practice, you’ll be passing along you’re learning to early data science trainees ramping them up for real-world problems and mentoring our Bootcamp attendees through interesting Kaggle competitions. Over a few months, you will evolve into an exceptional data scientist with a holistic understanding of real-world applications of machine learning and predictive analysis.

Being a data scientist is about anticipating and solving problems while remaining within ethical boundaries, the journey from trainee to a full stack data scientist will transform you into a thought leader. You’ll be sworn in by reading the Hippocratic oath of a data scientist which helps guide your decision-making.

data science infographic
Hippocratic Oath of a Data Scientists

You will focus on the bigger picture of a business problem while being aware of the uncertainties in your data. The key aspects of the role are charting out project strategy, managing team members, providing recommendations on data modeling, and extracting valuable insights from data. We’ll work on your individual growth as a leader and improve your ability to foster organizational engagement.

Data Science Dojo is a unique workplace that invests heavily in employees and growth. Being one of the foremost global data science companies, we ensure that our clients and customers get the best services and products. All employees hired for a data science role go through a rigorous training plan that helps them improve their written and visual communication skills, technical skills, and project management skills. All these skills are critical for your success as a data scientist.

Learn more about programming languages

Related Topics

Machine Learning
Generative AI
Data Visualization
Data Security
Data Science
Data Engineering
Data Analytics
Computer Vision
Artificial Intelligence