For a hands-on learning experience to develop LLM applications, join our LLM Bootcamp today.
First 4 seats get an early bird discount of 30%! So hurry up!

Text analytics

Large Language Model (LLM) Bootcamps are designed for learners to grasp the hands-on experience of working with Open AI. Popularly known as the brains behind ChatGPT, LLMs are advanced artificial intelligence (AI) systems capable of understanding and generating human language.

They utilize deep learning algorithms and extensive data to grasp language nuances and produce coherent responses. LLM power of platforms like, Google’s BERT and OpenAI’s ChatGPT, demonstrate remarkable accuracy in predicting and generating text based on input.

LLM power at the Bootcamp build your own ChatGPT
LLM Bootcamp: Build your own ChatGPT

ChatGPT, in particular, gained massive popularity within a short period due to its ability to mimic human-like responses. It leverages machine learning algorithms trained on an extensive dataset, surpassing BERT in terms of training capacity.

LLMs like ChatGPT excel in generating personalized and contextually relevant responses, making them valuable in customer service applications. Compared to intent-based chatbots, LLM-powered chatbots can handle more complex and multi-touch inquiries, including product questions, conversational commerce, and technical support.

Large language model bootcamp

The benefits of LLM-powered chatbots include their ability to provide conversational support and emulate human-like interactions. However, there are also risks associated with LLMs that need to be considered.

 

Practical applications of LLM power and chatbots

  • Enhancing e-Commerce: LLM chatbots allow customers to interact directly with brands, receiving tailored product recommendations and human-like assistance.
  • Brand consistency: LLM chatbots maintain a brand’s personality and tone consistently, reducing the need for extensive training and quality assurance checks.
  • Segmentation: LLM chatbots identify customer personas based on interactions and adapt responses and recommendations for a hyper-personalized experience.
  • Multilingual capabilities: LLM chatbots can respond to customers in any language, enabling global support for diverse customer bases.
  • Text-to-voice: LLM chatbots can create a digital avatar experience, simulating human-like conversations and enhancing the user experience.

 

Read about –> Unleash LlamaIndex: The key to uncovering deeper insights in text exploration

Other reasons why you need a LLM Bootcamp

You might want to sign up for a LLM bootcamp for many reasons. Here are a few of the most common reasons:

  • To learn about the latest LLM technologies: LLM bootcamps teach you about the latest LLM technologies, such as GPT-3, LaMDA, and Jurassic-1 Jumbo. This knowledge can help you stay ahead of the curve in the rapidly evolving field of LLMs.
  • To build your own LLM applications: LLM bootcamps teach you how to build your own LLM applications. This can be a valuable skill, as LLM applications have the potential to revolutionize many industries.
  • To get hands-on experience with LLMs: LLM bootcamps allow you to get hands-on experience with LLMs. This experience can help you develop your skills and become an expert in LLMs.
  • To network with other LLM professionals: LLM bootcamps allow you to network with other LLM professionals. This networking can help you stay up-to-date on the latest trends in LLMs and find opportunities to collaborate with other professionals.

 

Data Science Dojo’s Large Language Model LLM Bootcamp

The Large Language Model (LLM) Bootcamp is a focused program dedicated to building LLM-powered applications. This intensive course offers participants the opportunity to acquire the necessary skills in just 40 hours.

Centered around the practical applications of LLMs in natural language processing, the bootcamp emphasizes the utilization of libraries like Hugging Face and LangChain.

It enables participants to develop expertise in text analytics techniques, such as semantic search and Generative AI. The bootcamp also offers hands-on experience in deploying web applications on cloud services. It is designed to cater to professionals who aim to enhance their understanding of Generative AI, covering essential principles and real-world implementation, without requiring extensive coding skills.

 

Who is this LLM Bootcamp for?

1. Individuals with Interest in LLM Application Development:

This course is suitable for anyone interested in gaining practical experience and a headstart in building LLM (Language Model) applications.

2. Data Professionals Seeking Advanced AI Skills:

Data professionals aiming to enhance their data skills with the latest generative AI tools and techniques will find this course beneficial.

3. Product Leaders from Enterprises and Startups:

Product leaders working in enterprises or startups who wish to harness the power of LLMs to improve their products, processes, and services can benefit from this course.

What will you learn in this LLM Bootcamp?

In this Large Language Models Bootcamp, you will learn a comprehensive set of skills and techniques to build and deploy custom Large Language Model (LLM) applications. Over 5 days and 40 hours of hands-on learning, you’ll gain the following knowledge:

Generative AI and LLM Fundamentals: You will receive a thorough introduction to the foundations of generative AI, including the workings of transformers and attention mechanisms in text and image-based models.

Canonical Architectures of LLM Applications: Understand various LLM-powered application architectures and learn about their trade-offs to make informed design decisions.

Embeddings and Vector Databases: Gain practical experience in working with vector databases and embeddings, allowing efficient storage and retrieval of vector representations.

 

Read more –> Guide to vector embeddings and vector database pipeline

 

Prompt Engineering: Master the art of prompt engineering, enabling you to effectively control LLM model outputs and generate captivating content across different domains and tasks.

Orchestration Frameworks: Explore orchestration frameworks like LangChain and Llama Index, and learn how to utilize them for LLM application development.

Deployment of LLM Applications: Learn how to deploy your custom LLM applications using Azure and Hugging Face cloud services.

Customizing Large Language Models: Acquire practical experience in fine-tuning LLMs to suit specific tasks and domains, using parameter-efficient tuning and retrieval parameter-efficient + retrieval-augmented approaches.

Building An End-to-End Custom LLM Application: Put your knowledge into practice by creating a custom LLM application on your own selected datasets.

 

Building your own custom LLM application

After completing the Large Language Models Bootcamp, you will be well-prepared to build your own ChatGPT-like application with confidence and expertise. Throughout the comprehensive 5-day program, you will have gained a deep understanding of the underlying principles and practical skills required for LLM application development. Here’s how you’ll be able to build your own ChatGPT-like application:

Foundational Knowledge: The bootcamp will start with an introduction to generative AI, LLMs, and foundation models. You’ll learn how transformers and attention mechanisms work behind text-based models, which is crucial for understanding the core principles of LLM applications.

Customization and Fine-Tuning: You will acquire hands-on experience in customizing Large Language Models. Fine-tuning techniques will be covered in-depth, allowing you to adapt pre-trained models to your specific use case, just like how ChatGPT was built upon a pre-trained language model.

Prompt Engineering: You’ll master the art of prompt engineering, a key aspect of building ChatGPT-like applications. By effectively crafting prompts, you can control the model’s output and generate tailored responses to user inputs, making your application more dynamic and interactive.

 

 

Read more –> 10 steps to become a prompt engineer: A comprehensive guide

 

Orchestration Frameworks: Understanding orchestration frameworks like LangChain and Llama Index will empower you to structure and manage the components of your application, ensuring seamless execution and scalability – a crucial aspect when building applications like ChatGPT.

Deployment and Integration: The bootcamp covers the deployment of LLM applications using cloud services like Azure and Hugging Face cloud. This knowledge will enable you to deploy your own ChatGPT-like application, making it accessible to users on various platforms.

Project-Based Learning: Towards the end of the bootcamp, you will have the opportunity to apply your knowledge by building an end-to-end custom LLM application. The project will challenge you to create a functional and interactive application, similar to building your own ChatGPT from scratch.

Access to Resources: After completing the bootcamp, you’ll have access to course materials, coding labs, Jupyter notebooks, and additional learning resources for one year. These resources will serve as valuable references as you work on your ChatGPT-like application.

Furthermore, the LLM bootcamp employs advanced technology and tools such as OpenAI Cohere, Pinecone, Llama Index, Zilliz Chroma, LangChain, Hugging Face, Redis, and Streamlit.

Register today            

July 18, 2023

All of these written texts are unstructured; text mining algorithms and techniques work best on structured data.

Text analytics for machine learning: Part 1

Have you ever wondered how Siri can understand English? How can you type a question into Google and get what you want?

Over the next week, we will release a five-part blog series on text analytics that will give you a glimpse into the complexities and importance of text mining and natural language processing.

This first section discusses how text is converted to numerical data.

In the past, we have talked about how to build machine learning models on structured data sets. However, life does not always give us data that is clean and structured. Much of the information generated by humans has little or no formal structure: emails, tweets, blogs, reviews, status updates, surveys, legal documents, and so much more. There is a wealth of knowledge stored in these kinds of documents which data scientists and analysts want access to. “Text analytics” is the process by which you extract useful information from text.

Some examples include:

All these written texts are unstructured; machine learning algorithms and techniques work best (or often, work only) on structured data. So, for our machine learning models to operate on these documents, we must convert the unstructured text into a structured matrix. Usually this is done by transforming each document into a sparse matrix (a big but mostly empty table). Each word gets its own column in the dataset, which tracks whether a word appears (binary) in the text OR how often the word appears (term-frequency). For example, consider the two statements below. They have been transformed into a simple term frequency matrix. Each word gets a distinct column, and the frequency of occurrence is tracked. If this were a binary matrix, there would only be ones and zeros instead of a count of the terms.

Make words usable for machine learning

Text Mining

Why do we want numbers instead of text? Most machine learning algorithms and data analysis techniques assume numerical data (or data that can be ranked or categorized). Similarity between documents is calculated by determining the distance between the frequency of words. For example, if the word “team” appears 4 times in one document and 5 times in a second document, they will be calculated as more similar than a third document where the word “team” only appears once.

 

Clusters
Sample clusters

Text mining: Build a matrix

While our example was simple (6 words), term frequency matrices on larger datasets can be tricky.

Imagine turning every word in the Oxford English dictionary into a matrix, that’s 171,476 columns. Now imagine adding everyone’s names, every corporation or product or street name that ever existed. Now feed it slang. Feed it every rap song. Feed it fantasy novels like Lord of the Rings or Harry Potter so that our model will know what to do when it encounters “The Shire” or “Hogwarts.” Good, now that’s just English. Do the same thing again for Russian, Mandarin, and every other language.

After this is accomplished, we are approaching a several billion-column matrix; two problems arise. First, it becomes computationally unfeasible and memory intensive to perform calculations over this matrix. Secondly, the curse of dimensionality kicks in and distance measurements become so absurdly large in scale that they all seem the same. Most of the research and time that goes into natural language processing is less about the syntax of language (which is important) but more about how to reduce the size of this matrix.

Now that we know what we must do and the challenges that we must face in order to reach our desired result. The next three blogs in the series will be directly addressed to these problems. We will introduce you to 3 concepts: conforming, stemming, and stop word removal.

Want to learn more about text mining and text analytics?

Check out our short video on our data science bootcamp curriculum page OR watch our video on tweet sentiment analysis.

 

 

Written by Phuc Duong

June 15, 2022

Related Topics

Statistics
Resources
rag
Programming
Machine Learning
LLM
Generative AI
Data Visualization
Data Security
Data Science
Data Engineering
Data Analytics
Computer Vision
Career
AI