In this session, you’ll learn about the main concepts behind Time Series: preprocessing, alignment, missing value imputation, forecasting, and evaluation. Together we will build a demand prediction application: first with (S)ARIMA models and then with machine learning models. The codeless examples are built in the KNIME Analytics Platform using the Time Series components provided for preprocessing, transforming, aggregating, forecasting, and inspecting time series data. You will also be provided example workflows to use later in your own projects.