For a hands-on learning experience to develop LLM applications, join our LLM Bootcamp today.
First 6 seats get an early bird discount of 30%! So hurry up!

Crack the Large Language Model’s Code: Explore Top 20 LLM Terms

Large language models (LLMs) are AI models that can generate text, translate languages, write different kinds of creative content, and answer your questions in an informative way. They are trained on massive amounts of text data, and they can learn to understand the nuances of human language.

In this blog, we will take a deep dive into LLMs, including their building blocks, such as embeddings, transformers, and attention. We will also discuss the different applications of LLMs, such as machine translation, question answering, and creative writing.

 

To test your knowledge of LLM terms, we have included a crossword or quiz at the end of the blog. So, what are you waiting for? Let’s crack the code of large language models!

 

Large language model bootcamp

Read more –>  40-hour LLM application roadmap

LLMs are typically built using a transformer architecture. Transformers are a type of neural network that are well-suited for natural language processing tasks. They are able to learn long-range dependencies between words, which is essential for understanding the nuances of human language.

They are typically trained on clusters of computers or even on cloud computing platforms. The training process can take weeks or even months, depending on the size of the dataset and the complexity of the model.

20 Essential LLM Terms for Crafting Applications

1. Large language model (LLM)

Large language models (LLMs) are AI models that can generate text, translate languages, write different kinds of creative content, and answer your questions in an informative way. The building blocks of an LLM are embeddings, transformers, attention, and loss functions.

Embeddings are vectors that represent the meaning of words or phrases. Transformers are a type of neural network that is well-suited for NLP tasks. Attention is a mechanism that allows the LLM to focus on specific parts of the input text. The loss function is used to measure the error between the LLM’s output and the desired output. The LLM is trained to minimize the loss function.

2. OpenAI

OpenAI is a non-profit research company that develops and deploys artificial general intelligence (AGI) in a safe and beneficial way. AGI is a type of artificial intelligence that can understand and reason like a human being. OpenAI has developed a number of LLMs, including GPT-3, Jurassic-1 Jumbo, and DALL-E 2.

GPT-3 is a large language model that can generate text, translate languages, write different kinds of creative content, and answer your questions in an informative way. Jurassic-1 Jumbo is a larger language model that is still under development. It is designed to be more powerful and versatile than GPT-3. DALL-E 2 is a generative AI model that can create realistic images from text descriptions.

3. Generative AI

Generative AI is a type of AI that can create new content, such as text, images, or music. LLMs are a type of generative AI. They are trained on large datasets of text and code, which allows them to learn the patterns of human language. This allows them to generate text that is both coherent and grammatically correct.

Generative AI has a wide range of potential applications. It can be used to create new forms of art and entertainment, to develop new educational tools, and to improve the efficiency of businesses. It is still a relatively new field, but it is rapidly evolving.

4. ChatGPT

ChatGPT is a large language model (LLM) developed by OpenAI. It is designed to be used in chatbots. ChatGPT is trained on a massive dataset of text and code, which allows it to learn the patterns of human conversation. This allows it to hold conversations that are both natural and engaging. ChatGPT is also capable of answering questions, providing summaries of factual topics, and generating different creative text formats.

5. Bard

Bard is a large language model (LLM) developed by Google AI. It is still under development, but it has been shown to be capable of generating text, translating languages, and writing different kinds of creative content. Bard is trained on a massive dataset of text and code, which allows it to learn the patterns of human language. This allows it to generate text that is both coherent and grammatically correct. Bard is also capable of answering your questions in an informative way, even if they are open-ended, challenging, or strange.

6. Foundation models

Foundation models are a family of large language models (LLMs) developed by Google AI. They are designed to be used as a starting point for developing other AI models. Foundation models are trained on massive datasets of text and code, which allows them to learn the patterns of human language. This allows them to be used to develop a wide range of AI applications, such as chatbots, machine translation, and question-answering systems.

 

 

7. LangChain

LangChain is a text-to-image diffusion model that can be used to generate images from text descriptions. It is based on the Transformer model and is trained on a massive dataset of text and images. LangChain is still under development, but it has the potential to be a powerful tool for creative expression and problem-solving.

8. Llama Index

Llama Index is a data framework for large language models (LLMs). It provides tools to ingest, structure, and access private or domain-specific data. LlamaIndex can be used to connect LLMs to a variety of data sources, including APIs, PDFs, documents, and SQL databases. It also provides tools to index and query data, so that LLMs can easily access the information they need.

Llama Index is a relatively new project, but it has already been used to build a number of interesting applications. For example, it has been used to create a chatbot that can answer questions about the stock market, and a system that can generate creative text formats, like poems, code, scripts, musical pieces, email, and letters.

9. Redis

Redis is an in-memory data store that can be used to store and retrieve data quickly. It is often used as a cache for web applications, but it can also be used for other purposes, such as storing embeddings. Redis is a popular choice for NLP applications because it is fast and scalable.

10. Streamlit

Streamlit is a framework for creating interactive web apps. It is easy to use and does not require any knowledge of web development. Streamlit is a popular choice for NLP applications because it allows you to quickly and easily build web apps that can be used to visualize and explore data.

11. Cohere

Cohere is a large language model (LLM) developed by Google AI. It is known for its ability to generate human-quality text. Cohere is trained on a massive dataset of text and code, which allows it to learn the patterns of human language. This allows it to generate text that is both coherent and grammatically correct. Cohere is also capable of translating languages, writing different kinds of creative content, and answering your questions in an informative way.

12. Hugging Face

Hugging Face is a company that develops tools and resources for NLP. It offers a number of popular open-source libraries, including Transformer models and datasets. Hugging Face also hosts a number of online communities where NLP practitioners can collaborate and share ideas.

 

LLM Crossword
LLM Crossword

13. Midjourney

Midjourney is a LLM developed by Midjourney. It is a text-to-image AI platform that uses a large language model (LLM) to generate images from natural language descriptions. The user provides a prompt to Midjourney, and the platform generates an image that matches the prompt. Midjourney is still under development, but it has the potential to be a powerful tool for creative expression and problem-solving.

14. Prompt Engineering

Prompt engineering is the process of crafting prompts that are used to generate text with LLMs. The prompt is a piece of text that provides the LLM with information about what kind of text to generate.

Prompt engineering is important because it can help to improve the performance of LLMs. By providing the LLM with a well-crafted prompt, you can help the model to generate more accurate and creative text. Prompt engineering can also be used to control the output of the LLM. For example, you can use prompt engineering to generate text that is similar to a particular style of writing, or to generate text that is relevant to a particular topic.

When crafting prompts for LLMs, it is important to be specific, use keywords, provide examples, and be patient. Being specific helps the LLM to generate the desired output, but being too specific can limit creativity.

Using keywords helps the LLM focus on the right topic, and providing examples helps the LLM learn what you are looking for. It may take some trial and error to find the right prompt, so don’t give up if you don’t get the desired output the first time.

Read more –> How to become a prompt engineer?

15. Embeddings

Embeddings are a type of vector representation of words or phrases. They are used to represent the meaning of words in a way that can be understood by computers. LLMs use embeddings to learn the relationships between words.

Embeddings are important because they can help LLMs to better understand the meaning of words and phrases, which can lead to more accurate and creative text generation. Embeddings can also be used to improve the performance of other NLP tasks, such as natural language understanding and machine translation.

Read more –> Embeddings: The foundation of large language models

16. Fine-tuning

Fine-tuning is the process of adjusting the parameters of a large language model (LLM) to improve its performance on a specific task. Fine-tuning is typically done by feeding the LLM a dataset of text that is relevant to the task.

For example, if you want to fine-tune an LLM to generate text about cats, you would feed the LLM a dataset of text that contains information about cats. The LLM will then learn to generate text that is more relevant to the task of generating text about cats.

Fine-tuning can be a very effective way to improve the performance of an LLM on a specific task. However, it can also be a time-consuming and computationally expensive process.

17. Vector databases

Vector databases are a type of database that is optimized for storing and querying vector data. Vector data is data that is represented as a vector of numbers. For example, an embedding is a vector that represents the meaning of a word or phrase.

Vector databases are often used to store embeddings because they can efficiently store and retrieve large amounts of vector data. This makes them well-suited for tasks such as natural language processing (NLP), where embeddings are often used to represent words and phrases.

Vector databases can be used to improve the performance of fine-tuning by providing a way to store and retrieve large datasets of text that are relevant to the task. This can help to speed up the fine-tuning process and improve the accuracy of the results.

18. Natural Language Processing (NLP)

Natural Language Processing (NLP) is a field of computer science that deals with the interaction between computers and human (natural) languages. NLP tasks include text analysis, machine translation, and question answering. LLMs are a powerful tool for NLP. NLP is a complex field that covers a wide range of tasks. Some of the most common NLP tasks include:

  • Text analysis: This involves extracting information from text, such as the sentiment of a piece of text or the entities that are mentioned in the text.
    • For example, an NLP model could be used to determine whether a piece of text is positive or negative, or to identify the people, places, and things that are mentioned in the text.
  • Machine translation: This involves translating text from one language to another.
    • For example, an NLP model could be used to translate a news article from English to Spanish.
  • Question answering: This involves answering questions about text.
    • For example, an NLP model could be used to answer questions about the plot of a movie or the meaning of a word.
  • Speech recognition: This involves converting speech into text.
    • For example, an NLP model could be used to transcribe a voicemail message.
  • Text generation: This involves generating text, such as news articles or poems.
    • For example, an NLP model could be used to generate a creative poem or a news article about a current event.

19. Tokenization

Tokenization is the process of breaking down a piece of text into smaller units, such as words or subwords. Tokenization is a necessary step before LLMs can be used to process text. When text is tokenized, each word or subword is assigned a unique identifier. This allows the LLM to track the relationships between words and phrases.

There are many different ways to tokenize text. The most common way is to use word boundaries. This means that each word is a token. However, some LLMs can also handle subwords, which are smaller units of text that can be combined to form words.

For example, the word “cat” could be tokenized as two subwords: “c” and “at”. This would allow the LLM to better understand the relationships between words, such as the fact that “cat” is related to “dog” and “mouse”.

20. Transformer models

Transformer models are a type of neural network that is well-suited for NLP tasks. They are able to learn long-range dependencies between words, which is essential for understanding the nuances of human language. Transformer models work by first creating a representation of each word in the text. This representation is then used to calculate the relationship between each word and the other words in the text.

The Transformer model is a powerful tool for NLP because it can learn the complex relationships between words and phrases. This allows it to perform NLP tasks with a high degree of accuracy. For example, a Transformer model could be used to translate a sentence from English to Spanish while preserving the meaning of the sentence.

 

Read more –> Transformer Models: The Future of Natural Language Processing

 

Register today

Data Science Dojo | data science for everyone

Discover more from Data Science Dojo

Subscribe to get the latest updates on AI, Data Science, LLMs, and Machine Learning.