Interested in a hands-on learning experience for developing LLM applications?
Join our LLM Bootcamp today and Get 28% Off for a Limited Time!

LLM

Word embeddings provide a way to present complex data in a way that is understandable by machines. Hence, acting as a translator, it converts human language into a machine-readable form. Their impact on ML tasks has made them a cornerstone of AI advancements.

These embeddings, when particularly used for natural language processing (NLP) tasks, are also referred to as LLM embeddings. In this blog, we will focus on these embeddings in LLM and explore how they have evolved over time within the world of NLP, each transformation being a result of technological advancement and progress.

This journey of continuous evolution of LLM embeddings is key to the enhancement of large language models performance and its improved understanding of the human language. Before we take a trip through the journey of embeddings from the beginning, let’s revisit the impact of embeddings on LLMs.

 

4 Growth Stages of Word Embeddings: Making Machines Smarter | Data Science Dojo

 

Impact of embeddings on LLMs

It is the introduction of embeddings that has transformed LLMs over time from basic text processors to powerful tools that understand language. They have empowered language models to move beyond tasks of simple text manipulation to generate complex and contextually relevant content.

With a deeper understanding of the human language, LLM embeddings have also facilitated these models to generate outputs with greater accuracy. Hence, in their own journey of evolution through the years, embeddings have transformed LLMs to become more efficient and creative, generating increasingly innovative and coherent responses.

 

Read on to understand the role of embeddings in generative AI

 

Let’s take a step back and travel through the journey of LLM embeddings from the start to the present day, understanding their evolution every step of the way.

Growth Stages of Word Embeddings

Embeddings have revolutionized the functionality and efficiency of LLMs. The journey of their evolution has empowered large language models to do much more with the content. Let’s get a glimpse of the journey of LLM embeddings to understand the story behind the enhancement of LLMs.

 

Evolution of LLM embeddings from word embeddings
Stages in the evolution of LLM embeddings

 

Stage 1: Traditional vector representations

The earliest word representations were in the form of traditional vectors for machines, where words were treated as isolated entities within a text. While it enabled machines to read and understand words, it failed to capture the contextual relationships between words.

Techniques present in this era of language models included:

One-hot encoding

It converts categorical data into a machine-readable format by creating a new binary feature for each category of a data point. It allows ML models to work with data but in a limited manner. Moreover, the technique is more suited to numerical data than textual input.

Bag-of-words (BoW)

This technique focuses on summarizing textual data by creating a simple feature for each word in the input data. BoW does not focus on the order of words in a text. Hence, while it is helpful to develop a basic understanding of a document, it is limited in forming a connection between words to grasp a deeper meaning.

Stage 2: Introduction of neural networks

The next step for LLM embeddings was the introduction of neural networks to capture the contextual information within the data.

 

Here’s a comprehensive guide to understanding neural networks

 

New techniques to translate data for machines were used using neural networks, which primarily included:

Self-Organizing Maps (SOMs)

These are useful to explore high-dimensional data, like textual information that has many features. SOMs work to bring down the information into a 2-dimensional map where similar data points form clusters, providing a starting point for advanced embeddings.

Simple Recurrent Networks (SRNs)

The strength of SRNs lies in their ability to handle sequences like text. They function by remembering past inputs to learn more contextual information. However, with long sequences, the networks failed to capture the intricate nuances of language.

Stage 3: The rise of word embeddings

It marks one of the major transitions in the history of LLM embeddings. The idea of word embeddings brought forward the vector representation of words. It also resulted in the formation of more refined word clusters in the three-dimensional space, capturing the semantic relationship between words in a better way.

Some popular word embedding models are listed below.

Word2Vec

It is a word embedding technique that considers the surrounding words in a text and their co-occurrence to determine the complete contextual information.

Using this information, Word2Vec creates a unique vector representation of each word, creating improved clusters for similar words. This allows machines to grasp the nuances of language and perform tasks like machine translation and text summarization more effectively.

Global Vectors for Word Representation (GloVe)

It takes on a statistical approach in determining the contextual information of words and analyzing how effectively words contribute to the overall meaning of a document.

With a broader analysis of co-occurrences, GloVe captures the semantic similarity and any analogies in the data. It creates informative word vectors that enhance tasks like sentiment analysis and text classification.

FastText

This word embedding technique involves handling out-of-vocabulary (OOV) words by incorporating subword information. It functions by breaking down words into smaller units called n-grams. FastText creates representations by analyzing the occurrences of n-grams within words.

Stage 4: The emergence of contextual embeddings

This stage is marked by embeddings and gathering contextual information after the analysis of surrounding words and sentences. It creates a dynamic representation of words based on the specific context in which they appear. The era of contextual embeddings has evolved in the following manner:

Transformer-based models

The use of transformer-based models like BERT has boosted the revolution of embeddings. Using a transformer architecture, a model like BERT generates embeddings that capture both contextual and syntactic information, leading to highly enhanced performance on various NLP tasks.

 

Navigate transformer models to understand how they will shape the future of NLP

 

Multimodal embeddings

As data complexity has increased, embeddings are also created to cater to the various forms of information like text, image, audio, and more. Models like OpenAI’s CLIP (Contrastive Language-Image Pretraining) and Vision Transformer (ViT) enable joint representation learning, allowing embeddings to capture cross-modal relationships.

Transfer Learning and Fine-Tuning

Techniques of transfer learning and fine-tuning pre-trained embeddings have also facilitated the growth of embeddings since they eliminate the need for training from scratch. Leveraging these practices results in more specialized LLMs dealing with specific tasks within the realm of NLP.

Hence, the LLM embeddings started off from traditional vector representations and have evolved from simple word embeddings to contextual embeddings over time. While we now understand the different stages of the journey of embeddings in NLP tasks, let’s narrow our lens towards a comparative look at things.

 

Read more about fine-tuning LLMs

 

Through a lens of comparative analysis

Embeddings have played a crucial role in NLP tasks to enhance the accuracy of translation from human language to machine-readable form. With context and meaning as major nuances of human language, embeddings have evolved to apply improved techniques to generate the closest meaning of textual data for ML tasks.

A comparative analysis of some important stages of evolution for LLM embeddings presents a clearer understanding of the aspects that have improved and in what ways.

Word embeddings vs contextual embeddings

Word embeddings and contextual embeddings are both techniques used in NLP to represent words or phrases as numerical vectors. They differ in the way they capture information and the context in which they operate.

 

LLM Embeddings: Word embeddings vs contextual embeddings
Comparison of word and contextual embeddings at a glance – Source: ResearchGate

 

Word embeddings represent words in a fixed-dimensional vector space, giving each unit a unique code that presents its meaning. These codes are based on co-occurrence patterns or global statistics, where each word’s code has a single vector representation regardless of its context.

In this way, word embeddings capture the semantic relationships between words, allowing for tasks like word similarity and analogy detection. They are particularly useful when the meaning of a word remains relatively constant across different contexts.

Popular word embedding techniques include Word2Vec and GloVe.

On the other hand, contextual embeddings consider the surrounding context of a word or phrase, creating a more contextualized vector representation. It enables them to capture the meaning of words based on the specific context in which they appear, allowing for more nuanced and dynamic representations.

Contextual embeddings are trained using deep neural networks. They are particularly useful for tasks like sentiment analysis, machine translation, and question answering, where capturing the nuances of meaning is crucial. Common examples of contextual embeddings include ELMo and BERT.

How generative AI and LLMs work

 

Hence, it is evident that while word embeddings provide fixed representations in a vector space, contextual embeddings generate more dynamic results based on the surrounding context. The choice between the two depends on the specific NLP task and the level of context sensitivity required.

Unsupervised vs. supervised learning for embeddings

While vector representation and contextual inference remain important factors in the evolution of LLM embeddings, the lens of comparative analysis also highlights another aspect for discussion. It involves the different approaches to train embeddings. The two main approaches of interest for embeddings include unsupervised and supervised learning.

 

word embeddings - training approaches
Visually representing unsupervised and supervised learning – Source: ResearchGate

 

As the name suggests, unsupervised learning is a type of approach that allows the model to learn patterns and analyze massive amounts of text without any labels or guidance. It aims to capture the inherent structure of the data by finding meaningful representations without any specific task in mind.

Word2Vec and GloVe use unsupervised learning, focusing on how often words appear together to capture the general meaning. They use techniques like neural networks to learn word embeddings based on co-occurrence patterns in the data.

Since unsupervised learning does not require labeled data, it is easier to execute and manage. It is suitable for tasks like word similarity, analogy detection, and even discovering new relationships between words. However, it is limited in its accuracy, especially for words with multiple meanings.

On the contrary, supervised learning requires labeled data where each unit has explicit input-output pairs to train the model. These algorithms train embeddings by leveraging labeled data to learn representations that are optimized for a specific task or prediction.

 

Learn more about embeddings as building blocks for LLMs

 

BERT and ELMo are techniques that use supervised learning to capture the meaning of words based on their specific context. These algorithms are trained on large datasets and fine-tuned for specialized tasks like sentiment analysis, named entity recognition, and question answering. However, labeling data can be an expensive and laborious task.

When it comes to choosing the appropriate approach to train embeddings, it depends on the availability of labeled data. Moreover, it is also linked to your needs, where general understanding can be achieved through unsupervised learning but contextual accuracy requires supervised learning.

Another way out is to combine the two approaches when training your embeddings. It can be done by using unsupervised methods to create a foundation and then fine-tuning them with supervised learning for your specific task. This refers to the concept of pre-training of word embeddings.

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

The role of pre-training in embedding quality

Pre-training refers to the unsupervised learning of a model through massive amounts of textual data before its fine-tuning. By analyzing this data, the model builds a strong understanding of how words co-occur, how sentences work, and how context influences meaning.

It plays a crucial role in embedding quality as it determines a model’s understanding of language fundamentals, impacting the accuracy of an LLM to capture contextual information. It leads to improved performance in tasks like sentiment analysis and machine translation. Hence, with more comprehensive pre-training, you get better results from embeddings.

 

 

What is next in word embeddings?

The future of LLM embeddings is brimming with potential. With transformer-based and multimodal embeddings, there is immense room for further advancements.

The future is also about making LLM embeddings more accessible and applicable to real-world problems, from education to chatbots that can navigate complex human interactions and much more. Hence, it is about pushing the boundaries of language understanding and communication in AI.

May 10, 2024

In recent years, the landscape of artificial intelligence has been transformed by the development of large language models like GPT-3 and BERT, renowned for their impressive capabilities and wide-ranging applications.

However, alongside these giants, a new category of AI tools is making waves—the small language models (SLMs). These models, such as LLaMA 3, Phi 3, Mistral 7B, and Gemma, offer a potent combination of advanced AI capabilities with significantly reduced computational demands.

Why are Small Language Models Needed?

This shift towards smaller, more efficient models is driven by the need for accessibility, cost-effectiveness, and the democratization of AI technology.

Small language models require less hardware, lower energy consumption, and offer faster deployment, making them ideal for startups, academic researchers, and businesses that do not possess the immense resources often associated with big tech companies.

Moreover, their size does not merely signify a reduction in scale but also an increase in adaptability and ease of integration across various platforms and applications.

Benefits of Small Language Models SLMs | Phi 3

How Small Language Models Excel with Fewer Parameters?

Several factors explain why smaller language models can perform effectively with fewer parameters.

Primarily, advanced training techniques play a crucial role. Methods like transfer learning enable these models to build on pre-existing knowledge bases, enhancing their adaptability and efficiency for specialized tasks.

For example, knowledge distillation from large language models to small language models can achieve comparable performance while significantly reducing the need for computational power.

Moreover, smaller models often focus on niche applications. By concentrating their training on targeted datasets, these models are custom-built for specific functions or industries, enhancing their effectiveness in those particular contexts.

For instance, a small language model trained exclusively on medical data could potentially surpass a general-purpose large model in understanding medical jargon and delivering accurate diagnoses.

However, it’s important to note that the success of a small language model depends heavily on its training regimen, fine-tuning, and the specific tasks it is designed to perform. Therefore, while small models may excel in certain areas, they might not always be the optimal choice for every situation.

Best Small Langauge Models in 2024

Leading Small Language Models | Llama 3 | phi-3
Leading Small Language Models (SLMs)

1. Llama 3 by Meta

LLaMA 3 is an open-source language model developed by Meta. It’s part of Meta’s broader strategy to empower more extensive and responsible AI usage by providing the community with tools that are both powerful and adaptable. This model builds upon the success of its predecessors by incorporating advanced training methods and architecture optimizations that enhance its performance across various tasks such as translation, dialogue generation, and complex reasoning.

Performance and Innovation

Meta’s LLaMA 3 has been trained on significantly larger datasets compared to earlier versions, utilizing custom-built GPU clusters that enable it to process vast amounts of data efficiently.

This extensive training has equipped LLaMA 3 with an improved understanding of language nuances and the ability to handle multi-step reasoning tasks more effectively. The model is particularly noted for its enhanced capabilities in generating more aligned and diverse responses, making it a robust tool for developers aiming to create sophisticated AI-driven applications.

Llama 3 pre-trained model performance
Llama 3 pre-trained model performance – Source: Meta

Why LLaMA 3 Matters

The significance of LLaMA 3 lies in its accessibility and versatility. Being open-source, it democratizes access to state-of-the-art AI technology, allowing a broader range of users to experiment and develop applications. This model is crucial for promoting innovation in AI, providing a platform that supports both foundational and advanced AI research. By offering an instruction-tuned version of the model, Meta ensures that developers can fine-tune LLaMA 3 to specific applications, enhancing both performance and relevance to particular domains.

 

Learn more about Meta’s Llama 3 

 

2. Phi 3 By Microsoft

Phi-3 is a pioneering series of SLMs developed by Microsoft, emphasizing high capability and cost-efficiency. As part of Microsoft’s ongoing commitment to accessible AI, Phi-3 models are designed to provide powerful AI solutions that are not only advanced but also more affordable and efficient for a wide range of applications.

These models are part of an open AI initiative, meaning they are accessible to the public and can be integrated and deployed in various environments, from cloud-based platforms like Microsoft Azure AI Studio to local setups on personal computing devices.

Performance and Significance

The Phi 3 models stand out for their exceptional performance, surpassing both similar and larger-sized models in tasks involving language processing, coding, and mathematical reasoning.

Notably, the Phi-3-mini, a 3.8 billion parameter model within this family, is available in versions that handle up to 128,000 tokens of context—setting a new standard for flexibility in processing extensive text data with minimal quality compromise.

Microsoft has optimized Phi 3 for diverse computing environments, supporting deployment across GPUs, CPUs, and mobile platforms, which is a testament to its versatility.

Additionally, these models integrate seamlessly with other Microsoft technologies, such as ONNX Runtime for performance optimization and Windows DirectML for broad compatibility across Windows devices.

Phi 3 family comparison gemma 7b mistral 7b mixtral llama 3
Phi-3 family comparison with Gemma 7b, Mistral 7b, Mixtral 8x7b, Llama 3 – Source: Microsoft

Why Does Phi 3 Matter?

The development of Phi 3 reflects a significant advancement in AI safety and ethical AI deployment. Microsoft has aligned the development of these models with its Responsible AI Standard, ensuring that they adhere to principles of fairness, transparency, and security, making them not just powerful but also trustworthy tools for developers.

3. Mixtral 8x7B by Mistral AI

Mixtral, developed by Mistral AI, is a groundbreaking model known as a Sparse Mixture of Experts (SMoE). It represents a significant shift in AI model architecture by focusing on both performance efficiency and open accessibility.

Mistral AI, known for its foundation in open technology, has designed Mixtral to be a decoder-only model, where a router network selectively engages different groups of parameters, or “experts,” to process data.

This approach not only makes Mixtral highly efficient but also adaptable to a variety of tasks without requiring the computational power typically associated with large models.

 

Explore the showdown of 7B LLMs – Mistral 7B vs Llama-2 7B

Performance and Innovations

Mixtral excels in processing large contexts up to 32k tokens and supports multiple languages including English, French, Italian, German, and Spanish.

It has demonstrated strong capabilities in code generation and can be fine-tuned to follow instructions precisely, achieving high scores on benchmarks like the MT-Bench.

What sets Mixtral apart is its efficiency—despite having a total parameter count of 46.7 billion, it effectively utilizes only about 12.9 billion per token, aligning it with much smaller models in terms of computational cost and speed.

Why Does Mixtral Matter?

The significance of Mixtral lies in its open-source nature and its licensing under Apache 2.0, which encourages widespread use and adaptation by the developer community.

This model is not only a technological innovation but also a strategic move to foster more collaborative and transparent AI development. By making high-performance AI more accessible and less resource-intensive, Mixtral is paving the way for broader, more equitable use of advanced AI technologies.

Mixtral’s architecture represents a step towards more sustainable AI practices by reducing the energy and computational costs typically associated with large models. This makes it not only a powerful tool for developers but also a more environmentally conscious choice in the AI landscape.

Large Language Models Bootcamp | LLM

4. Gemma by Google

Gemma is a new generation of open models introduced by Google, designed with the core philosophy of responsible AI development. Developed by Google DeepMind along with other teams at Google, Gemma leverages the foundational research and technology that also gave rise to the Gemini models.

Technical Details and Availability

Gemma models are structured to be lightweight and state-of-the-art, ensuring they are accessible and functional across various computing environments—from mobile devices to cloud-based systems.

Google has released two main versions of Gemma: a 2 billion parameter model and a 7 billion parameter model. Each of these comes in both pre-trained and instruction-tuned variants to cater to different developer needs and application scenarios.

Gemma models are freely available and supported by tools that encourage innovation, collaboration, and responsible usage.

Why Does Gemma Matter?

Gemma models are significant not just for their technical robustness but for their role in democratizing AI technology. By providing state-of-the-art capabilities in an open model format, Google facilitates a broader adoption and innovation in AI, allowing developers and researchers worldwide to build advanced applications without the high costs typically associated with large models.

Moreover, Gemma models are designed to be adaptable, allowing users to tune them for specialized tasks, which can lead to more efficient and targeted AI solutions

Explore a hands-on curriculum that helps you build custom LLM applications!

5. OpenELM Family by Apple

OpenELM is a family of small language models developed by Apple. OpenELM models are particularly appealing for applications where resource efficiency is critical. OpenELM is open-source, offering transparency and the opportunity for the wider research community to modify and adapt the models as needed.

Performance and Capabilities

Despite their smaller size and open-source nature, it’s important to note that OpenELM models do not necessarily match the top-tier performance of some larger, more closed-source models. They achieve moderate accuracy levels across various benchmarks but may lag behind in more complex or nuanced tasks. For example, while OpenELM shows improved performance compared to similar models like OLMo in terms of accuracy, the improvement is moderate.

Why Does OpenELM Matter?

OpenELM represents a strategic move by Apple to integrate state-of-the-art generative AI directly into its hardware ecosystem, including laptops and smartphones.

By embedding these efficient models into devices, Apple can potentially offer enhanced on-device AI capabilities without the need to constantly connect to the cloud.

Apple's Open-Source SLMs family | Phi 3
Apple’s Open-Source SLM family

This not only improves functionality in areas with poor connectivity but also aligns with increasing consumer demands for privacy and data security, as processing data locally minimizes the risk of exposure over networks.

Furthermore, embedding OpenELM into Apple’s products could give the company a significant competitive advantage by making their devices smarter and more capable of handling complex AI tasks independently of the cloud.

How generative AI and LLMs work

This can transform user experiences, offering more responsive and personalized AI interactions directly on their devices. The move could set a new standard for privacy in AI, appealing to privacy-conscious consumers and potentially reshaping consumer expectations in the tech industry.

The Future of Small Language Models

As we dive deeper into the capabilities and strategic implementations of small language models, it’s clear that the evolution of AI is leaning heavily towards efficiency and integration. Companies like Apple, Microsoft, and Google are pioneering this shift by embedding advanced AI directly into everyday devices, enhancing user experience while upholding stringent privacy standards.

This approach not only meets the growing consumer demand for powerful, yet private technology solutions but also sets a new paradigm in the competitive landscape of tech companies.

May 7, 2024

Have you ever thought about the leap from “Good to Great” as James Collins describes in his book?

This is precisely what we aim to achieve with large language models (LLMs) today.

We are at a stage where language models are surely competent, but the challenge is to elevate them to excellence.

While there are numerous approaches that are being discussed currently to enhance LLMs, one approach that seems to be very promising is incorporating agentic workflows in LLMs.

Future of LLMs | AI Agents Workflows
Andrew NG Tweet| AI Agents

Let’s dig deeper into what are AI agents, and how can they improve the results generated by LLMs.

What are Agentic Workflows

Agentic workflows are all about making LLMs smarter by integrating them into structured processes. This helps the AI deliver higher-quality results.

Right now, large language models usually operate on a zero-shot mode.

This equates to asking someone to write an 800-word blog on AI agents in one go, without any edits.

 

It’s not ideal, right?

 

That’s where AI agents come in. They let the LLM go over the task multiple times, fine-tuning the results each time. This process uses extra tools and smarter decision-making to really leverage what LLMs can do, especially for specific, targeted projects. Read more about AI agents

How AI Agents Enhance Large Language Models

Agent workflows have been proven to dramatically improve the performance of language models. For example, GPT 3.5 observed an increase in coding accuracy from 48.1% to 95.1% when moving from zero-shot prompting to an agent workflow on a coding benchmark.

GPT 3.5 and GPT 4 Performance Increase with AI Agents
Source: DeepLearning.AI

Building Blocks for AI Agents

There is a lot of work going on globally about different strategies to create AI agents. To put the research into perspective, here’s a framework for categorizing design patterns for building agents.

Framework for AI Agentic Workflow for LLMs | LLM Agents
Framework for agentic workflow for LLM Applications

 

1. Reflection

Reflection refers to a design pattern where an LLM generates an output and then reflects on its creation to identify improvement areas.

This process of self-critique allows the model to automatically provide constructive criticism of its output, much like a human would revise their work after writing a first draft.

Reflection leads to performance gains in AI agents by enabling them to self-criticize and improve through an iterative process.

When an LLM generates an initial output, it can be prompted to reflect on that output by checking for issues related to correctness, style, efficiency, and whatnot.

Reflection in Action

Here’s an example process of how Reflection leads to improved code:

  1. Initially, an LLM receives a prompt to write code for a specific task, X.
  2. Once the code is generated, the LLM reviews its work, assessing the code’s accuracy, style, and efficiency, and provides suggestions for improvements.
  3. The LLM identifies any issues or opportunities for optimization and proposes adjustments based on this evaluation.
  4. The LLM is prompted to refine the code, this time incorporating the insights gained from its own review.
  5. This review and revision cycle continues, with the LLM providing ongoing feedback and making iterative enhancements to the code.

 

Large language model bootcamp

 

2. Tool Use

Incorporating different tools in the agenetic workflow allows the language model to call upon various tools for gathering information, taking actions, or manipulating data to accomplish tasks. This pattern extends the functionality of LLMs beyond generating text-based responses, allowing them to interact with external systems and perform more complex operations.

One can argue that some of the current consumer-facing products like ChatGPT are already capitalizing on different tools like web-search. Well, what we are proposing is different and massive. Here’s how:

  • Access to Multiple Tools:

We are talking about AI Agents with the ability to access a variety of tools to perform a broad range of functions, from searching different sources (e.g., web, Wikipedia, arXiv) to interfacing with productivity tools (e.g., email, calendars).

This will allow LLMs to perform more complex tasks, such as managing communications, scheduling meetings, or conducting in-depth research—all in real-time.

Developers can use heuristics to include the most relevant subset of tools in the LLM’s context at each processing step, similar to how retrieval augmented generation (RAG) systems choose subsets of text for contextual relevance.

  • Code Execution

One of the significant challenges with current LLMs is their limited ability to perform accurate computations directly from a trained model.

For instance, asking a typical LLM a math-related query like calculating compound interest might not yield the correct result.

This is where the integration of tools like Python into LLMs becomes invaluable. By allowing LLMs to execute Python code, they can precisely calculate and solve complex mathematical queries.

This capability not only enhances the functionality of LLMs in academic and professional settings but also boosts user trust in their ability to handle technical tasks effectively.

3. Multi-Agent Collaboration

Handling complex tasks can often be too challenging for a single AI agent, much like it would be for an individual person.

This is where multi-agent collaboration becomes crucial. By dividing these complex tasks into smaller, more manageable parts, each AI agent can focus on a specific segment where its expertise can be best utilized.

This approach mirrors how human teams operate, with different specialists taking on different roles within a project. Such collaboration allows for more efficient handling of intricate tasks, ensuring each part is managed by the most suitable agent, thus enhancing overall effectiveness and results.

How different AI agents can perform specialized roles within a single workflow?

In a multi-agent collaboration framework, various specialized agents work together within a single system to efficiently handle complex tasks. Here’s a straightforward breakdown of the process:

  • Role Specialization: Each agent has a specific role based on its expertise. For example, a Product Manager agent might create a Product Requirement Document (PRD), while an Architect agent focuses on technical specifications.
  • Task-Oriented Dialogue: The agents communicate through task-oriented dialogues, initiated by role-specific prompts, to effectively contribute to the project.
  • Memory Stream: A memory stream records all past dialogues, helping agents reference previous interactions for more informed decisions, and maintaining continuity throughout the workflow.
  • Self-Reflection and Feedback: Agents review their decisions and actions, using self-reflection and feedback mechanisms to refine their contributions and ensure alignment with the overall goals.
  • Self-Improvement: Through active teamwork and learning from past projects, agents continuously improve, enhancing the system’s overall effectiveness.

This framework allows for streamlined and effective management of complex tasks by distributing them among specialized LLM agents, each handling aspects they are best suited for.

Such systems not only manage to optimize the execution of subtasks but also do so cost-effectively, scaling to various levels of complexity and broadening the scope of applications that LLMs can address.

Furthermore, the capacity for planning and tool use within the multi-agent framework enriches the solution space, fostering creativity and improved decision-making akin to a well-orchestrated team of specialists.

 

How generative AI and LLMs work

 

4. Planning

Planning is a design pattern that empowers large language models to autonomously devise a sequence of steps to achieve complex objectives.

Rather than relying on a single tool or action, planning allows an agent to dynamically determine the necessary steps to accomplish a task, which might not be pre-determined or decomposable into a set of subtasks in advance.

By decomposing a larger task into smaller, manageable subtasks, planning allows for a more systematic approach to problem-solving, leading to potentially higher-quality and more comprehensive outcomes

Impact of  Planning on Outcome Quality

The impact of Planning on outcome quality is multifaceted:

Adaptability: It gives AI agents the flexibility to adapt their strategies on the fly, making them capable of handling unexpected changes or errors in the workflow.
Dynamism: Planning allows agents to dynamically decide on the execution of tasks, which can result in creative and effective solutions to problems that are not immediately obvious.
Autonomy: It enables AI systems to work with minimal human intervention, enhancing efficiency and reducing the time to resolution.

Challenges of Planning

The use of Planning also presents several challenges:

  • Predictability: The autonomous nature of Planning can lead to less predictable results, as the sequence of actions determined by the agent may not always align with human expectations.
  • Complexity: As the complexity of tasks increases, so does the challenge for the LLM to predict precise plans. This necessitates further optimization of LLMs for task planning to handle a broader range of tasks effectively.

Despite these challenges, the field is rapidly evolving, and improvements in planning abilities are expected to enhance the quality of outcomes further while mitigating the associated challenges

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

The Future of Agentic Workflows in LLMs

This strategic approach to developing LLM agent through agentic workflows offers a promising path to not just enhancing their performance but also expanding their applicability across various domains.

The ongoing optimization and integration of these workflows are crucial for achieving the high standards of reliability and ethical responsibility required in advanced AI systems.

 

May 3, 2024

Large language models (LLMs) have taken the world by storm with their ability to understand and generate human-like text. These AI marvels can analyze massive amounts of data, answer your questions in comprehensive detail, and even create different creative text formats, like poems, code, scripts, musical pieces, emails, letters, etc.

It’s like having a conversation with a computer that feels almost like talking to a real person!

However, LLMs on their own exist within a self-contained world of text. They can’t directly interact with external systems or perform actions in the real world. This is where LLM agents come in and play a transformative role.

 

Large language model bootcamp

LLM agents act as powerful intermediaries, bridging the gap between the LLM’s internal world and the vast external world of data and applications. They essentially empower LLMs to become more versatile and take action on their behalf. Think of an LLM agent as a personal assistant for your LLM, fetching information and completing tasks based on your instructions.

For instance, you might ask an LLM, “What are the next available flights to New York from Toronto?” The LLM can access and process information but cannot directly search the web – it is reliant on its training data.

An LLM agent can step in, retrieve the data from a website, and provide the available list of flights to the LLM. The LLM can then present you with the answer in a clear and concise way.

 

Role of LLM agents at a glance
Role of LLM agents at a glance – Source: LinkedIn

 

By combining LLMs with agents, we unlock a new level of capability and versatility. In the following sections, we’ll dive deeper into the benefits of using LLM agents and explore how they are revolutionizing various applications.

Benefits and Use-cases of LLM Agents

Let’s explore in detail the transformative benefits of LLM agents and how they empower LLMs to become even more powerful.

Enhanced Functionality: Beyond Text Processing

LLMs excel at understanding and manipulating text, but they lack the ability to directly access and interact with external systems. An LLM agent bridges this gap by allowing the LLM to leverage external tools and data sources.

Imagine you ask an LLM, “What is the weather forecast for Seattle this weekend?” The LLM can understand the question but cannot directly access weather data. An LLM agent can step in, retrieve the forecast from a weather API, and provide the LLM with the information it needs to respond accurately.

This empowers LLMs to perform tasks that were previously impossible, like: 

  • Accessing and processing data from databases and APIs 
  • Executing code 
  • Interacting with web services 

Increased Versatility: A Wider Range of Applications

By unlocking the ability to interact with the external world, LLM agents significantly expand the range of applications for LLMs. Here are just a few examples: 

  • Data Analysis and Processing: LLMs can be used to analyze data from various sources, such as financial reports, social media posts, and scientific papers. LLM agents can help them extract key insights, identify trends, and answer complex questions. 
  • Content Generation and Automation: LLMs can be empowered to create different kinds of content, like articles, social media posts, or marketing copy. LLM agents can assist them by searching for relevant information, gathering data, and ensuring factual accuracy. 
  • Custom Tools and Applications: Developers can leverage LLM agents to build custom tools that combine the power of LLMs with external functionalities. Imagine a tool that allows an LLM to write and execute Python code, search for information online, and generate creative text formats based on user input. 

 

Explore the dynamics and working of agents in LLM

 

Improved Performance: Context and Information for Better Answers

LLM agents don’t just expand what LLMs can do, they also improve how they do it. By providing LLMs with access to relevant context and information, LLM agents can significantly enhance the quality of their responses: 

  • More Accurate Responses: When an LLM agent retrieves data from external sources, the LLM can generate more accurate and informative answers to user queries. 
  • Enhanced Reasoning: LLM agents can facilitate a back-and-forth exchange between the LLM and external systems, allowing the LLM to reason through problems and arrive at well-supported conclusions. 
  • Reduced Bias: By incorporating information from diverse sources, LLM agents can mitigate potential biases present in the LLM’s training data, leading to fairer and more objective responses. 

Enhanced Efficiency: Automating Tasks and Saving Time

LLM agents can automate repetitive tasks that would otherwise require human intervention. This frees up human experts to focus on more complex problems and strategic initiatives. Here are some examples: 

  • Data Extraction and Summarization: LLM agents can automatically extract relevant data from documents and reports, saving users time and effort. 
  • Research and Information Gathering: LLM agents can be used to search for information online, compile relevant data points, and present them to the LLM for analysis. 
  • Content Creation Workflows: LLM agents can streamline content creation workflows by automating tasks like data gathering, formatting, and initial drafts. 

In conclusion, LLM agents are a game-changer, transforming LLMs from powerful text processors to versatile tools that can interact with the real world. By unlocking enhanced functionality, increased versatility, improved performance, and enhanced efficiency, LLM agents pave the way for a new wave of innovative applications across various domains.

In the next section, we’ll explore how LangChain, a framework for building LLM applications, can be used to implement LLM agents and unlock their full potential.

 

Overview of an autonomous LLM agent system
Overview of an autonomous LLM agent system – Source: GitHub

 

Implementing LLM Agents with LangChain 

Now, let’s explore how LangChain, a framework specifically designed for building LLM applications, empowers us to implement LLM agents. 

What is LangChain?

LangChain is a powerful toolkit that simplifies the process of building and deploying LLM applications. It provides a structured environment where you can connect your LLM with various tools and functionalities, enabling it to perform actions beyond basic text processing. Think of LangChain as a Lego set for building intelligent applications powered by LLMs.

 

 

Implementing LLM Agents with LangChain: A Step-by-Step Guide

Let’s break down the process of implementing LLM agents with LangChain into manageable steps: 

Setting Up the Base LLM

The foundation of your LLM agent is the LLM itself. You can either choose an open-source model like Llama2 or Mixtral, or a proprietary model like OpenAI’s GPT or Cohere. 

Defining the Tools

Identify the external functionalities your LLM agent will need. These tools could be: 

  • APIs: Services that provide programmatic access to data or functionalities (e.g., weather API, stock market API) 
  • Databases: Collections of structured data your LLM can access and query (e.g., customer database, product database) 
  • Web Search Tools: Tools that allow your LLM to search the web for relevant information (e.g., duckduckgo, serper API) 
  • Coding Tools: Tools that allow your LLM to write and execute actual code (e.g., Python REPL Tool)

 

Defining the tools of an AI-powered LLM agent
Defining the tools of an AI-powered LLM agent

 

You can check out LangChain’s documentation to find a comprehensive list of tools and toolkits provided by LangChain that you can easily integrate into your agent, or you can easily define your own custom tool such as a calculator tool.

Creating an Agent

This is the brain of your LLM agent, responsible for communication and coordination. The agent understands the user’s needs, selects the appropriate tool based on the task, and interprets the retrieved information for response generation. 

Defining the Interaction Flow

Establish a clear sequence for how the LLM, agent, and tools interact. This flow typically involves: 

  • Receiving a user query 
  • The agent analyzes the query and identifies the necessary tools 
  • The agent passes in the relevant parameters to the chosen tool(s) 
  • The LLM processes the retrieved information from the tools
  • The agent formulates a response based on the retrieved information 

Integration with LangChain

LangChain provides the platform for connecting all the components. You’ll integrate your LLM and chosen tools within LangChain, creating an agent that can interact with the external environment. 

Testing and Refining

Once everything is set up, it’s time to test your LLM agent! Put it through various scenarios to ensure it functions as expected. Based on the results, refine the agent’s logic and interactions to improve its accuracy and performance. 

By following these steps and leveraging LangChain’s capabilities, you can build versatile LLM agents that unlock the true potential of LLMs.

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

LangChain Implementation of an LLM Agent with tools

In the next section, we’ll delve into a practical example, walking you through a Python Notebook that implements a LangChain-based LLM agent with retrieval (RAG) and web search tools. OpenAI’s GPT-4 has been used as the LLM of choice here. This will provide you with a hands-on understanding of the concepts discussed here. 

The agent has been equipped with two tools: 

  1. A retrieval tool that can be used to fetch information from a vector store of Data Science Dojo blogs on the topic of RAG. LangChain’s PyPDFLoader is used to load and chunk the PDF blog text, OpenAI embeddings are used to embed the chunks of data, and Weaviate client is used for indexing and storage of data. 
  1. A web search tool that can be used to query the web and bring up-to-date and relevant search results based on the user’s question. Google Serper API is used here as the search wrapper – you can also use duckduckgo search or Tavily API. 

Below is a diagram depicting the agent flow:

 

LangChain implementation of an LLM agent with tools
LangChain implementation of an LLM agent with tools

 

Let’s now start going through the code step-by-step. 

Installing Libraries

Let’s start by downloading all the necessary libraries that we’ll need. This includes libraries for handling language models, API clients, and document processing.

 

Importing and Setting API Keys

Now, we’ll ensure our environment has access to the necessary API keys for OpenAI and Serper by importing them and setting them as environment variables. 

 

Documents Preprocessing: Mounting Google Drive and Loading Documents

Let’s connect to Google Drive and load the relevant documents. I‘ve stored PDFs of various Data Science Dojo blogs related to RAG, which we’ll use for our tool. Following are the links to the blogs I have used: 

  1. https://datasciencedojo.com/blog/rag-with-llamaindex/ 
  1. https://datasciencedojo.com/blog/llm-with-rag-approach/ 
  1. https://datasciencedojo.com/blog/efficient-database-optimization/ 
  1. https://datasciencedojo.com/blog/rag-llm-and-finetuning-a-guide/ 
  1. https://datasciencedojo.com/blog/rag-vs-finetuning-llm-debate/ 
  1. https://datasciencedojo.com/blog/challenges-in-rag-based-llm-applications/ 

 

Extracting Text from PDFs

Using the PyPDFLoader from Langchain, we’ll extract text from each PDF by breaking them down into individual pages. This helps in processing and indexing them separately. 

 

Embedding and Indexing through Weaviate: Embedding Text Chunks

Now we’ll use Weaviate client to turn our text chunks into embeddings using OpenAI’s embedding model. This prepares our text for efficient querying and retrieval.

 

Setting Up the Retriever

With our documents embedded, let’s set up the retriever which will be crucial for fetching relevant information based on user queries.

 

Defining Tools: Retrieval and Search Tools Setup

Next, we define two key tools: one for retrieving information from our indexed blogs, and another for performing web searches for queries that extend beyond our local data.

 

Adding Tools to the List

We then add both tools to our tool list, ensuring our agent can access these during its operations.

 

Setting up the Agent: Creating the Prompt Template

Let’s create a prompt template that guides our agent on how to handle different types of queries using the tools we’ve set up. 

 

Initializing the LLM with GPT-4

For the best performance, I used GPT-4 as the LLM of choice as GPT-3.5 seemed to struggle with routing to tools correctly and would go back and forth between the two tools needlessly.

 

Creating and Configuring the Agent

With the tools and prompt template ready, let’s construct the agent. This agent will use our predefined LLM and tools to handle user queries.

 

 

Invoking the Agent: Agent Response to a RAG-related Query

Let’s put our agent to the test by asking a question about RAG and observing how it uses the tools to generate an answer.

 

Agent Response to an Unrelated Query

Now, let’s see how our agent handles a question that’s not about RAG. This will demonstrate the utility of our web search tool.

 

 

That’s all for the implementation of an LLM Agent through LangChain. You can find the full code here.

 

How generative AI and LLMs work

 

This is, of course, a very basic use case but it is a starting point. There is a myriad of stuff you can do using agents and LangChain has several cookbooks that you can check out. The best way to get acquainted with any technology is to actually get your hands dirty and use the technology in some way.

I’d encourage you to look up further tutorials and notebooks using agents and try building something yourself. Why not try delegating a task to an agent that you yourself find irksome – perhaps an agent can take off its burden from your shoulders!

LLM agents: A building block for LLM applications

To sum it up, LLM agents are a crucial element for building LLM applications. As you navigate through the process, make sure to consider the role and assistance they have to offer.

 

April 29, 2024

April 2024 is marked by Meta releasing Llama 3, the newest member of the Llama family. This latest large language model (LLM) is a powerful tool for natural language processing (NLP). Since Llama 2’s launch last year, multiple LLMs have been released into the market including OpenAI’s GPT-4 and Anthropic’s Claude 3.

Hence, the LLM market has become highly competitive and is rapidly advancing. In this era of continuous development, Meta has marked its territory once again with the release of Llama 3.

 

Large language model bootcamp

 

Let’s take a deeper look into the newly released LLM and evaluate its probable impact on the market.

What is Llama 3?

It is a text-generation open-source AI model that takes in a text input and generates a relevant textual response. It is trained on a massive dataset (15 trillion tokens of data to be exact), promising improved performance and better contextual understanding.

Thus, it offers better comprehension of data and produces more relevant outputs. The LLM is suitable for all NLP tasks usually performed by language models, including content generation, translating languages, and answering questions.

Since Llama 3 is an open-source model, it will be accessible to all for use. The model will be available on multiple platforms, including AWS, Databricks, Google Cloud, Hugging Face, Kaggle, IBM WatsonX, Microsoft Azure, NVIDIA NIM, and Snowflake.

 

Catch up on the history of the Llama family – Read in detail about Llama 2

 

Key features of the LLM

Meta’s latest addition to its family of LLMs is a powerful tool, boosting several key features that enable it to perform more efficiently. Let’s look at the important features of Llama 3.

Strong language processing

The language model offers strong language processing with its enhanced understanding of the meaning and context of textual data. The high scores on benchmarks like MMLU indicate its advanced ability to handle tasks like summarization and question-answering efficiently.

It also offers a high level of proficiency in logical reasoning. The improved reasoning capabilities enable Llama 3 to solve puzzles and understand cause-and-effect relationships within the text. Hence, the enhanced understanding of language ensures the model’s ability to generate innovative and creative content.

Open-source accessibility

It is an open-source LLM, making it accessible to researchers and developers. They can access, modify, and build different applications using the LLM. It makes Llama 3 an important tool in the development of the field of AI, promoting innovation and creativity.

Large context window

The size of context windows for the language model has been doubled from 4096 to 8192 tokens. It makes the window approximately the size of 15 pages of textual data. The large context window offers improved insights for the LLM to portray a better understanding of data and contextual information within it.

 

Read more about the context window paradox in LLMs

 

Code generation

Since Meta’s newest language model can generate different programming languages, this makes it a useful tool for programmers. Its increased knowledge of coding enables it to assist in code completion and provide alternative approaches in the code generation process.

 

While you explore Llama 3, also check out these 8 AI tools for code generation.

 

 

How does Llama 3 work?

Llama 3 is a powerful LLM that leverages useful techniques to process information. Its improved code enables it to offer enhanced performance and efficiency. Let’s review the overall steps involved in the language model’s process to understand information and generate relevant outputs.

Training

The first step is to train the language model on a huge dataset of text and code. It can include different forms of textual information, like books, articles, and code repositories. It uses a distributed file system to manage the vast amounts of data.

Underlying architecture

It has a transformer-based architecture that excels at sequence-to-sequence tasks, making it well-suited for language processing. Meta has only shared that the architecture is optimized to offer improved performance of the language model.

 

Explore the different types of transformer architectures and their uses

 

Tokenization

The data input is also tokenized before it enters the model. Tokenization is the process of breaking down the text into smaller words called tokens. Llama 3 uses a specialized tokenizer called Tiktoken for the process, where each token is mapped to a numerical identifier. This allows the model to understand the text in a format it can process.

Processing and inference

Once the data is tokenized and input into the language model, it is processed using complex computations. These mathematical calculations are based on the trained parameters of the model. Llama 3 uses inference, aligned with the prompt of the user, to generate a relevant textual response.

Safety and security measures

Since data security is a crucial element of today’s digital world, Llama 3 also focuses on maintaining the safety of information. Among its security measures is the use of tools like Llama Guard 2 and Llama Code Shield to ensure the safe and responsible use of the language model.

Llama Guard 2 analyzes the input prompts and output responses to categorize them as safe or unsafe. The goal is to avoid the risk of processing or generating harmful content.

Llama Code Shield is another tool that is particularly focused on the code generation aspect of the language model. It identifies security vulnerabilities in a code.

 

How generative AI and LLMs work

 

Hence, the LLM relies on these steps to process data and generate output, ensuring high-quality results and enhanced performance of the model. Since Llama 3 boasts of high performance, let’s explore the parameters are used to measure its enhanced performance.

What are the performance parameters for Llama 3?

The performance of the language model is measured in relation to two key aspects: model size and benchmark scores.

Model size

The model size of an LLM is defined by the number of parameters used for its training. Based on this concept, Llama 3 comes in two different sizes. Each model size comes in two different versions: a pre-trained (base) version and an instruct-tuned version.

 

Llama 3 pre-trained model performance
Llama 3 pre-trained model performance – Source: Meta

 

8B

This model is trained using 8 billion parameters, hence the name 8B. Its smaller size makes it a compact and fast-processing model. It is suitable for use in situations or applications where the user requires quick and efficient results.

70B

The larger model of Llama 3 is trained on 70 billion parameters and is computationally more complex. It is a more powerful version that offers better performance, especially on complex tasks.

In addition to the model size, the LLM performance is also measured and judged by a set of benchmark scores.

Benchmark scores

Meta claims that the language model achieves strong results on multiple benchmarks. Each one is focused on assessing the capabilities of the LLM in different areas. Some key benchmarks for Llama 3 are as follows:

MMLU (Massive Multitask Language Understanding)

It aims to measure the capability of an LLM to understand different languages. A high score indicates that the LLM has high language comprehension across various tasks. It typically tests the zero-shot language understanding to measure the range of general knowledge of a model due to its training.

MMLU spans a wide range of human knowledge, including 57 subjects. The score of the model is based on the percentage of questions the LLM answers correctly. The testing of Llama 3 uses:

  • Zero-shot evaluation – to measure the model’s ability to apply knowledge in the model weights to novel tasks. The model is tested on tasks that the model has never encountered before.
  • 5-shot evaluation – exposes the model to 5 sample tasks and then asks to answer an additional one. It measures the power of generalizability of the model from a small amount of task-specific information.

ARC (Abstract Reasoning Corpus)

It evaluates a model’s ability to perform abstract reasoning and generalize its knowledge to unseen situations. ARC challenges models with tasks requiring them to understand abstract concepts and apply reasoning skills, measuring their ability to go beyond basic pattern recognition and achieve more human-like forms of reasoning and abstraction.

GPQA (General Propositional Question Answering)

It refers to a specific type of question-answering tasks that evaluate an LLM’s ability to answer questions that require reasoning and logic over factual knowledge. It challenges LLMs to go beyond simple information retrieval by emphasizing their ability to process information and use it to answer complex questions.

Strong performance in GPQA tasks suggests an LLM’s potential for applications requiring comprehension, reasoning, and problem-solving, such as education, customer service chatbots, or legal research.

HumanEval

This benchmark measures an LLM’s proficiency in code generation. It emphasizes the importance of generating code that actually works as intended, allowing researchers and developers to compare the performance of different LLMs in code generation tasks.

Llama 3 uses the same setting of HumanEval benchmark – Pass@1 – as used for Llama 1 and 2. While it measures the coding ability of an LLM, it also indicates how often the model’s first choice of solution is correct.

 

Llama 3 instruct model performance
Llama 3 instruct model performance – Source: Meta

 

These are a few of the parameters that are used to measure the performance of an LLM. Llama 3 presents promising results across all these benchmarks alongside other tests like, MATH, GSM-8K, and much more. These parameters have determined Llama 3 as a high-performing LLM, promising its large-scale implementation in the industry.

Meta AI: A real-world application of Llama 3

While it is a new addition to Meta’s Llama family, the newest language model is the power behind the working of Meta AI. It is an AI assistant launched by Meta on all its social media platforms, leveraging the capabilities of Llama 3.

The underlying language model enables Meta AI to generate human-quality textual outputs, follow basic instructions to complete complex tasks, and process information from the real world through web search. All these features offer enhanced communication, better accessibility, and increased efficiency of the AI assistant.

 

Meta's AI Assistant leverages Llama 3
Meta’s AI assistant leverages Llama 3

 

It serves as a practical example of using Llama 3 to create real-world applications successfully. The AI assistant is easily accessible through all major social media apps, including Facebook, WhatsApp, and Instagram. It gives you access to real-time information without having to leave the application.

Moreover, Meta AI offers faster image generation, creating an image as you start typing the details. The results are high-quality visuals with the ability to do endless iterations to get the desired results.

With access granted in multiple countries – Australia, Canada, Ghana, Jamaica, Malawi, New Zealand, Nigeria, Pakistan, Singapore, South Africa, Uganda, Zambia, and Zimbabwe – Meta AI is a popular assistant across the globe.

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

Who should work with Llama 3?

Thus, Llama 3 offers new and promising possibilities for development and innovation in the field of NLP and generative AI. The enhanced capabilities of the language model can be widely adopted by various sectors like education, content creation, and customer service in the form of AI-powered tutors, writing assistants, and chatbots, respectively.

The key, however, remains to ensure responsible development that prioritizes fairness, explainability, and human-machine collaboration. If handled correctly, Llama 3 has the potential to revolutionize LLM technology and the way we interact with it.

The future holds a world where AI assists us in learning, creating, and working more effectively. It’s a future filled with both challenges and exciting possibilities, and Llama 3 is at the forefront of this exciting journey.

April 26, 2024

7B refers to a specific model size for large language models (LLMs) consisting of seven billion parameters. With the growing importance of LLMs, there are several options in the market. Each option has a particular model size, providing a wide range of choices to users.

However, in this blog we will explore two LLMs of 7B – Mistral 7B and Llama-2 7B, navigating the differences and similarities between the two options. Before we dig deeper into the showdown of the two 7B LLMs, let’s do a quick recap of the language models.

 

Large language model bootcamp

 

Understanding Mistral 7B and Llama-2 7B

Mistral 7B is an LLM powerhouse created by Mistral AI. The model focuses on providing enhanced performance and increased efficiency with reduced computing resource utilization. Thus, it is a useful option for conditions where computational power is limited.

Moreover, the Mistral LLM is a versatile language model, excelling at tasks like reasoning, comprehension, tackling STEM problems, and even coding.

 

Read more and gain deeper insight into Mistral 7B

 

On the other hand, Llama-2 7B is produced by Meta AI to specifically target the art of conversation. The researchers have fine-tuned the model, making it a master of dialog applications, and empowering it to generate interactive responses while understanding the basics of human language.

The Llama model is available on platforms like Hugging Face, allowing you to experiment with it as you navigate the conversational abilities of the LLM. Hence, these are the two LLMs with the same model size that we can now compare across multiple aspects.

Battle of the 7Bs: Mistral vs Llama

Now, we can take a closer look at comparing the two language models to understand the aspects of their differences.

Performance

When it comes to performance, Mistral AI’s model excels in its ability to handle different tasks. It has successfully reached the benchmark scores with every standardized test for various challenges in reasoning, comprehension, problem-solving, and much more.

On the contrary, Meta AI‘s production takes on a specialized approach. In this case, the art of conversation. While it will not score outstanding results and produce benchmark scores for a variety of tasks, its strength lies in its ability to understand and respond fluently within a dialogue.

 

A visual comparison of the performance parameters of the 7Bs
A visual comparison of the performance parameters of the 7Bs – Source: E2E Cloud

 

Efficiency

Mistral 7B operates with remarkable efficiency due to the adoption of a technique called Group-Query Attention (GQA). It allows the language model to group similar queries for faster inference and results.

GQA is the middle ground between the quality of Multi-Head Attention (MHA) and the speed of Multi-Query Attention (MQA) approaches. Hence, allowing the model to strike a balance between performance and efficiency.

However, scarce knowledge of the training data of Llama-2 7B limits the understanding of its efficiency. We can still say that a broader and more diverse dataset can enhance the model’s efficiency in producing more contextually relevant responses.

Accessibility

When it comes to accessibility of the two models, both are open-source resources that are open for use and experimentation. It can be noted though, that the Llama-2 model offers easier access through platforms like Hugging Face.

Meanwhile, the Mistral language model requires some deeper navigation and understanding of the resources provided by Mistral AI. It demands some research, unlike its competitor for information access.

Hence, these are some notable differences between the two language models. While these aspects might determine the usability and access of the models, each one has the potential to contribute to the development of LLM applications significantly.

 

How generative AI and LLMs work

 

Choosing the right model

Since we understand the basic differences, the debate comes down to selecting the right model for use. Based on the highlighted factors of comparison here, we can say that Mistral is an appropriate choice for applications that require overall efficiency and high performance in a diverse range of tasks.

Meanwhile, Llama-2 is more suited for applications that are designed to attain conversational prowess and dialog expertise. While this distinction of use makes it easier to pick the right model, some key factors to consider also include:

  • Future Development – Since both models are new, you must stay in touch with their ongoing research and updates. These advancements can bring new information to light, impacting your model selection.
  • Community Support – It is a crucial factor for any open-source tool. Investigate communities for both models to get a better understanding of the models’ power. A more active and thriving community will provide you with valuable insights and assistance, making your choice easier.

 

 

Future prospects for the language models

As the digital world continues to evolve, it is accurate to expect the language models to update into more powerful resources in the future. Among some potential routes for Mistral 7B is the improvement of GQA for better efficiency and the ability to run on even less powerful devices.

Moreover, Mistral AI can make the model more readily available by providing access to it through different platforms like Hugging Face. It will also allow a diverse developer community to form around it, opening doors for more experimentation with the model.

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

As for Llama-2 7B, future prospects can include advancements in dialog modeling. Researchers can work to empower the model to understand and process emotions in a conversation. It can also target multimodal data handling, going beyond textual inputs to handle audio or visual inputs as well.

Thus, we can speculate several trajectories for the development of these two language models. In this discussion, it can be said that no matter in what direction, an advancement of the models is guaranteed in the future. It will continue to open doors for improved research avenues and LLM applications.

April 23, 2024

Large language models (LLMs) are trained on massive textual data to generate creative and contextually relevant content. Since enterprises are utilizing LLMs to handle information effectively, they must understand the structure behind these powerful tools and the challenges associated with them.

One such component worthy of attention is the llm context window. It plays a crucial role in the development and evolution of LLM technology to enhance the way users interact with information.

In this blog, we will navigate the paradox around LLM context windows and explore possible solutions to overcome the challenges associated with large context windows. However, before we dig deeper into the topic, it’s essential to understand what LLM context windows are and their importance in the world of language models.

What are LLM context windows?

An LLM context window acts like a lens providing perspective to a large language model. The window keeps shifting to ensure a constant flow of information for an LLM as it engages with the user’s prompts and inputs. Thus, it becomes a short-term memory for LLMs to access when generating outputs.

 

Understanding the llm context window
A visual to explain context windows – Source: TechTarget

 

The functionality of a context window can be summarized through the following three aspects:

  • Focal word – Focuses on a particular word and the surrounding text, usually including a few nearby sentences in the data
  • Contextual information – Interprets the meaning and relationship between words to understand the context and provide relevant output for the users
  • Window size – Determines the amount of data and contextual information that is quickly accessible to the LLM when generating a response

Thus, context windows bae their function on the above aspects to assist LLMs in creating relevant and accurate outputs. These aspects also lay down a basis for the context window paradox that we aim to explore here.

 

Large language model bootcamp

 

What is the context window paradox?

It is a dilemma that revolves around the size of context windows. While it is only logical to expect large context windows to be beneficial, there are two sides to this argument.

 

Curious about the Curse of Dimensionality, Context Window Paradox, Lost in the Middle Problem in LLMs, and more? Catch Jerry Liu, Co-founder and CEO of LlamaIndex, simplifying these complex topics for you.

Tune in to our podcast now!

 

Side One

It elaborates on the benefits of large context windows. With a wider lens, LLMs get access to more textual data and information. It enables an LLM to study more data, forming better connections between words and generating improved contextual information.

Thus, the LLM generates enhanced outputs with better understanding and a coherent flow of information. It also assists language models to handle complex tasks more efficiently.

Side Two

While larger windows give access to more contextual information, it also increases the amount of data for LLMs to process. It makes it challenging to identify useful knowledge from irrelevant details in large amounts of data, overwhelming LLMs at the cost of degraded performance.

Thus, it makes the size of LLM context windows a paradoxical matter where users have to look for the right trade-off between improved contextual information and the high performance of LLMs. It leads one to decide how much information is a good amount for an efficient LLM.

Before we elaborate further on the paradox, let’s understand the role and importance of context windows in LLMs.

 

Explore and learn all you need to know about LLMs

 

Why do context windows matter in LLMs?

LLM context windows are important in ensuring the efficient working of LLMs. Their multifaceted role is described below.

Understanding language nuances

The focused perspective of context windows provides surrounding information in data, enabling LLMs to better understand the nuances of language. The model becomes trained to grasp the meaning and intent behind words. It empowers an LLM to perform the following tasks:

Machine translation

An LLM uses a context window to identify the nuances of language and contextual information to create the most appropriate translation. It caters to the understanding of context within an entire sentence or paragraph to ensure efficient machine translation.

Question answering

Understanding contextual information is crucial when answering questions. With relevant information on the situation and setting, it is easier to generate an informative answer. Using a context window, LLMs can identify the relevant parts of the conversation and avoid irrelevant tangents.

Coherent text generation

LLMs use context windows to generate text that aligns with the preceding information. By analyzing the context, the model can maintain coherence, tone, and overall theme in its response. This is important for tasks like:

Chatbots

Conversational engagement relies on a high level of coherence. It is particularly used in chatbots where the model remembers past interactions within a conversation. With the use of context windows, a chatbot can create a more natural and engaging conversation.

Here’s a step-by-step guide to building LLM chatbots.

 

 

Creative textual responses

LLMs can create creative content like poems, essays, and other texts. A context window allows an LLM to understand the desired style and theme from the given dataset to create creative responses that are more relevant and accurate.

Contextual learning

Context is a crucial element for LLMs which becomes more accessible with context windows. Analyzing the relevant data with a focus on words and text of interest allows an LLM to learn and adapt their responses. It becomes useful for uses like:

Virtual assistants

Virtual assistants are designed to help users in real time. Context window enables the assistant to remember past requests and preferences to provide more personalized and helpful service.

Open-ended dialogues

In ongoing conversations, the context window allows the LLM to track the flow of the dialogue and tailor its responses accordingly.

Hence, context windows act as a lens through which LLMs view and interpret information. The size and effectiveness of this perspective significantly impact the LLM’s ability to understand and respond to language in a meaningful way. This brings us back to the size of a context window and the associated paradox.

The context window paradox: Is bigger, not better?

While a bigger context window ensures LLM’s access to more information and better details for contextual relevance, it comes at a cost. Let’s take a look at some of the drawbacks for LLMs that come with increasing the context window size.

Information overload

Too much information can overwhelm a language model just like humans. Too much text leads to an information overload that includes irrelevant information that can become a distraction for an LLM.

It makes it difficult for LLMs to focus on key knowledge aspects within the context, making it difficult to generate effective responses to queries. Moreover, a large textual dataset also requires more computational resources, resulting in more expense and slower LLM performance.

Getting lost in data

Even with a larger window for data access, an LLM can process limited information effectively. In a wider span of data, an LLM can focus on the edges. It results in LLMs prioritizing the data at the start and end of a window, missing out on important information in the middle.

Moreover, mismanaged truncation to fit a large window size can result in the loss of essential information. As a result, it can compromise the quality of the results produced by the LLM.

Poor information management

A wider LLM context window means a larger context that can lead to poor handling and management of information or data. With too much noise in the data, it becomes difficult for an LLM to differentiate between important and unimportant information.

It can create redundancy or contradictions in produced results, harming the credibility and efficiency of a large language model. Moreover, it creates a possibility for bias amplification, leading to misleading outputs.

Long-range dependencies

With a focus on concepts spread far apart in large context windows, it can become challenging for an LLM to understand relationships between words and concepts. It limits the LLM’s ability for tasks requiring historical analysis or cause-and-effect relationships.

Thus, large context windows offer advantages but with some limitations. The best approach is to find the right balance between context size, efficiency, and the specific task at hand is crucial for optimal LLM performance.

 

How generative AI and LLMs work

 

Techniques to address context window paradox

Let’s look at some techniques that can assist you in optimizing the use of large context windows. Each one explores ways to find the optimal balance between context size and LLM performance.

Prioritization and attention mechanisms

Attention mechanism techniques can be used to focus on crucial and most relevant information within a context window. Hence, an LLM does not have to deal with the entire flow of information and can only focus on the highlighted parts within the window, enhancing its overall performance.

Strategic truncation

Since all the information within a context window is not important or equally relevant, truncation can be used to strategically remove unrelated details. The core elements of the text needed for the task are preserved while the unnecessary information is removed, avoiding information overload on the LLM.

 

 

Retrieval augmented generation (RAG)

This technique integrates an LLM with a retrieval system containing a vast external knowledge base to find information specifically relevant to the current prompt and context window. This allows the LLM to access a wider range of information without being overwhelmed by a massive internal window.

 

 

Prompt engineering

It focuses on crafting clear instructions for the LLM to efficiently utilize the context window. Clear and focused prompts can guide the LLM toward relevant information within the context, enhancing the LLM’s efficiency in utilizing context windows.

 

Here’s a 10-step guide to becoming a prompt engineer

 

Optimizing training data

It is a useful practice to organize training data, creating well-defined sections, summaries, and clear topic shifts, helping the LLM learn to navigate larger contexts more effectively. The structured information makes it easier for an LLM to process data within the context window.

These techniques can help us address the context window paradox and leverage the benefits of larger context windows while mitigating their drawbacks.

The Future of Context Windows in LLMs

We have looked at the varying aspects of LLM context windows and the paradox involving their size. With the right approach, technique, and balance, it is possible to choose the optimal context window size for an LLM. Moreover, it also highlights the need to focus on the potential of context windows beyond the paradox around their size.

The future is expected to transition from cramming more information into a context window to ward smarter context utilization. Moreover, advancements in attention mechanisms and integration with external knowledge bases will also play a role, allowing LLMs to pinpoint truly relevant information regardless of window size.

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

Ultimately, the goal is for LLMs to become context masters, understanding not just the “what” but also the “why” within the information they process. This will pave the way for LLMs to tackle even more intricate tasks and generate responses that are both informative and human-like.

April 22, 2024

Language is the basis for human interaction and communication. Speaking and listening are the direct by-products of human reliance on language. While humans can use language to understand each other, in today’s digital world, they must also interact with machines.

The answer lies in large language models (LLMs) – machine-learning models that empower machines to learn, understand, and interact using human language. Hence, they open a gateway to enhanced and high-quality human-computer interaction.

Let’s understand large language models further.

What are Large Language Models?

Imagine a computer program that’s a whiz with words, capable of understanding and using language in fascinating ways. That’s essentially what an LLM is! Large language models are powerful AI-powered language tools trained on massive amounts of text data, like books, articles, and even code.

By analyzing this data, LLMs become experts at recognizing patterns and relationships between words. This allows them to perform a variety of impressive tasks, like:

Creative Text Generation

LLMs can generate different creative text formats, crafting poems, scripts, musical pieces, emails, and even letters in various styles. From a catchy social media post to a unique story idea, these language models can pull you out of any writer’s block. Some LLMs, like LaMDA by Google AI, can help you brainstorm ideas and even write different creative text formats based on your initial input.

Speak Many Languages

Since language is the area of expertise for LLMs, the models are trained to work with multiple languages. It enables them to understand and translate languages with impressive accuracy. For instance, Microsoft’s Translator powered by LLMs can help you communicate and access information from all corners of the globe.

 

Large language model bootcamp

 

Information Powerhouse

With extensive training datasets and a diversity of information, LLMs become information powerhouses with quick answers to all your queries. They are highly advanced search engines that can provide accurate and contextually relevant information to your prompts.

Like Megatron-Turing NLG from NVIDIA can analyze vast amounts of information and summarize it in a clear and concise manner. This can help you gain insights and complete tasks more efficiently.

 

As you kickstart your journey of understanding LLMs, don’t forget to tune in to our Future of Data and AI podcast!

 

LLMs are constantly evolving, with researchers developing new techniques to unlock their full potential. These powerful language tools hold immense promise for various applications, from revolutionizing communication and content creation to transforming the way we access and understand information.

As LLMs continue to learn and grow, they’re poised to be a game-changer in the world of language and artificial intelligence.

While this is a basic concept of LLMs, they are a very vast concept in the world of generative AI and beyond. This blog aims to provide in-depth guidance in your journey to understand large language models. Let’s take a look at all you need to know about LLMs.

A Roadmap to Building LLM Applications

Before we dig deeper into the structural basis and architecture of large language models, let’s look at their practical applications and understand the basic roadmap to building them.

 

 

Explore the outline of a roadmap that will guide you in learning about building and deploying LLMs. Read more about it here.

LLM applications are important for every enterprise that aims to thrive in today’s digital world. From reshaping software development to transforming the finance industry, large language models have redefined human-computer interaction in all industrial fields.

However, the application of LLM is not just limited to technical and financial aspects of business. The assistance of large language models has upscaled the legal career of lawyers with ease of documentation and contract management.

 

Here’s your guide to creating personalized Q&A chatbots

 

While the industrial impact of LLMs is paramount, the most prominent impact of large language models across all fields has been through chatbots. Every profession and business has reaped the benefits of enhanced customer engagement, operational efficiency, and much more through LLM chatbots.

Here’s a guide to the building techniques and real-life applications of chatbots using large language models: Guide to LLM chatbots

LLMs have improved the traditional chatbot design, offering enhanced conversational ability and better personalization. With the advent of OpenAI’s GPT-4, Google AI’s Gemini, and Meta AI’s LLaMA, LLMs have transformed chatbots to become smarter and a more useful tool for modern-day businesses.

Hence, LLMs have emerged as a useful tool for enterprises, offering advanced data processing and communication for businesses with their machine-learning models. If you are looking for a suitable large language model for your organization, the first step is to explore the available options in the market.

Top Large Language Models to Choose From

The modern market is swamped with different LLMs for you to choose from. With continuous advancements and model updates, the landscape is constantly evolving to introduce improved choices for businesses. Hence, you must carefully explore the different LLMs in the market before deploying an application for your business.

 

Learn to build and deploy custom LLM applications for your business

 

Below is a list of LLMs you can find in the market today.

ChatGPT

The list must start with the very famous ChatGPT. Developed by OpenAI, it is a general-purpose LLM that is trained on a large dataset, consisting of text and code. Its instant popularity sparked a widespread interest in LLMs and their potential applications.

While people explored cheat sheets to master ChatGPT usage, it also initiated a debate on the ethical impacts of such a tool in different fields, particularly education. However, despite the concerns, ChatGPT set new records by reaching 100 million monthly active users in just two months.

This tool also offers plugins as supplementary features that enhance the functionality of ChatGPT. We have created a list of the best ChatGPT plugins that are well-suited for data scientists. Explore these to get an idea of the computational capabilities that ChatGPT can offer.

Here’s a guide to the best practices you can follow when using ChatGPT.

 

 

Mistral 7b

It is a 7.3 billion parameter model developed by Mistral AI. It incorporates a hybrid approach of transformers and recurrent neural networks (RNNs), offering long-term memory and context awareness for tasks. Mistral 7b is a testament to the power of innovation in the LLM domain.

Here’s an article that explains the architecture and performance of Mistral 7b in detail. You can explore its practical applications to get a better understanding of this large language model.

Phi-2

Designed by Microsoft, Phi-2 has a transformer-based architecture that is trained on 1.4 trillion tokens. It excels in language understanding and reasoning, making it suitable for research and development. With only 2.7 billion parameters, it is a relatively smaller LLM, making it useful for research and development.

You can read more about the different aspects of Phi-2 here.

Llama 2

It is an open-source large language model that varies in scale, ranging from 7 billion to a staggering 70 billion parameters. Meta developed this LLM by training it on a vast dataset, making it suitable for developers, researchers, and anyone interested in their potential.

Llama 2 is adaptable for tasks like question answering, text summarization, machine translation, and code generation. Its capabilities and various model sizes open up the potential for diverse applications, focusing on efficient content generation and automating tasks.

 

Read about the 6 different methods to access Llama 2

 

Now that you have an understanding of the different LLM applications and their power in the field of content generation and human-computer communication, let’s explore the architectural basis of LLMs.

Emerging Frameworks for Large Language Model Applications

LLMs have revolutionized the world of natural language processing (NLP), empowering the ability of machines to understand and generate human-quality text. The wide range of applications of these large language models is made accessible through different user-friendly frameworks.

 

orchestration framework for large language models
An outlook of the LLM orchestration framework

 

Let’s look at some prominent frameworks for LLM applications.

LangChain for LLM Application Development

LangChain is a useful framework that simplifies the LLM application development process. It offers pre-built components and a user-friendly interface, enabling developers to focus on the core functionalities of their applications.

LangChain breaks down LLM interactions into manageable building blocks called components and chains. Thus, allowing you to create applications without needing to be an LLM expert. Its major benefits include a simplified development process, flexibility in data integration, and the ability to combine different components for a powerful LLM.

With features like chains, libraries, and templates, the development of large language models is accelerated and code maintainability is promoted. Thus, making it a valuable tool to build innovative LLM applications. Here’s a comprehensive guide exploring the power of LangChain.

You can also explore the dynamics of the working of agents in LangChain.

LlamaIndex for LLM Application Development

It is a special framework designed to build knowledge-aware LLM applications. It emphasizes on integrating user-provided data with LLMs, leveraging specific knowledge bases to generate more informed responses. Thus, LlamaIndex produces results that are more informed and tailored to a particular domain or task.

With its focus on data indexing, it enhances the LLM’s ability to search and retrieve information from large datasets. With its security and caching features, LlamaIndex is designed to uncover deeper insights in text exploration. It also focuses on ensuring efficiency and data protection for developers working with large language models.

 

Tune in to this podcast featuring LlamaIndex’s Co-founder and CEO Jerry Liu, and learn all about LLMs, RAG, LlamaIndex and more!

 

 

Moreover, its advanced query interfaces make it a unique orchestration framework for LLM application development. Hence, it is a valuable tool for researchers, data analysts, and anyone who wants to unlock the knowledge hidden within vast amounts of textual data using LLMs.

Hence, LangChain and LlamaIndex are two useful orchestration frameworks to assist you in the LLM application development process. Here’s a guide explaining the role of these frameworks in simplifying the LLM apps.

Here’s a webinar introducing you to the architectures for LLM applications, including LangChain and LlamaIndex:

 

 

Understand the key differences between LangChain and LlamaIndex

 

The Architecture of Large Language Model Applications

While we have explored the realm of LLM applications and frameworks that support their development, it’s time to take our understanding of large language models a step ahead.

 

architecture for large language models
An outlook of the LLM architecture

 

Let’s dig deeper into the key aspects and concepts that contribute to the development of an effective LLM application.

Transformers and Attention Mechanisms

The concept of transformers in neural networks has roots stretching back to the early 1990s with Jürgen Schmidhuber’s “fast weight controller” model. However, researchers have constantly worked towards the advancement of the concept, leading to the rise of transformers as the dominant force in natural language processing

It has paved the way for their continued development and remarkable impact on the field. Transformer models have revolutionized NLP with their ability to grasp long-range connections between words because understanding the relationship between words across the entire sentence is crucial in such applications.

 

Read along to understand different transformer architectures and their uses

 

While you understand the role of transformer models in the development of NLP applications, here’s a guide to decoding the transformers further by exploring their underlying functionality using an attention mechanism. It empowers models to produce faster and more efficient results for their users.

 

 

Embeddings

While transformer models form the powerful machine architecture to process language, they cannot directly work with words. Transformers rely on embeddings to create a bridge between human language and its numerical representation for the machine model.

Hence, embeddings take on the role of a translator, making words comprehendible for ML models. It empowers machines to handle large amounts of textual data while capturing the semantic relationships in them and understanding their underlying meaning.

Thus, these embeddings lead to the building of databases that transformers use to generate useful outputs in NLP applications. Today, embeddings have also developed to present new ways of data representation with vector embeddings, leading organizations to choose between traditional and vector databases.

While here’s an article that delves deep into the comparison of traditional and vector databases, let’s also explore the concept of vector embeddings.

A Glimpse into the Realm of Vector Embeddings

These are a unique type of embedding used in natural language processing which converts words into a series of vectors. It enables words with similar meanings to have similar vector representations, producing a three-dimensional map of data points in the vector space.

 

Explore the role of vector embeddings in generative AI

 

Machines traditionally struggle with language because they understand numbers, not words. Vector embeddings bridge this gap by converting words into a numerical format that machines can process. More importantly, the captured relationships between words allow machines to perform NLP tasks like translation and sentiment analysis more effectively.

Here’s a video series providing a comprehensive exploration of embeddings and vector databases.

Vector embeddings are like a secret language for machines, enabling them to grasp the nuances of human language. However, when organizations are building their databases, they must carefully consider different factors to choose the right vector embedding model for their data.

However, database characteristics are not the only aspect to consider. Enterprises must also explore the different types of vector databases and their features. It is also a useful tactic to navigate through the top vector databases in the market.

Thus, embeddings and databases work hand-in-hand in enabling transformers to understand and process human language. These developments within the world of LLMs have also given rise to the idea of prompt engineering. Let’s understand this concept and its many facets.

Prompt Engineering

It refers to the art of crafting clear and informative prompts when one interacts with large language models. Well-defined instructions have the power to unlock an LLM’s complete potential, empowering it to generate effective and desired outputs.

Effective prompt engineering is crucial because LLMs, while powerful, can be like complex machines with numerous functionalities. Clear prompts bridge the gap between the user and the LLM. Specifying the task, including relevant context, and structuring the prompt effectively can significantly improve the quality of the LLM’s output.

With the growing dominance of LLMs in today’s digital world, prompt engineering has become a useful skill to hone for individuals. It has led to increased demand for skilled, prompt engineers in the job market, making it a promising career choice for people. While it’s a skill to learn through experimentation, here is a 10-step roadmap to kickstart the journey.

prompt engineering architecture
Explaining the workflow for prompt engineering

Now that we have explored the different aspects contributing to the functionality of large language models, it’s time we navigate the processes for optimizing LLM performance.

How to Optimize the Performance of Large Language Models

As businesses work with the design and use of different LLM applications, it is crucial to ensure the use of their full potential. It requires them to optimize LLM performance, creating enhanced accuracy, efficiency, and relevance of LLM results. Some common terms associated with the idea of optimizing LLMs are listed below:

Dynamic Few-Shot Prompting

Beyond the standard few-shot approach, it is an upgrade that selects the most relevant examples based on the user’s specific query. The LLM becomes a resourceful tool, providing contextually relevant responses. Hence, dynamic few-shot prompting enhances an LLM’s performance, creating more captivating digital content.

 

How generative AI and LLMs work

 

Selective Prediction

It allows LLMs to generate selective outputs based on their certainty about the answer’s accuracy. It enables the applications to avoid results that are misleading or contain incorrect information. Hence, by focusing on high-confidence outputs, selective prediction enhances the reliability of LLMs and fosters trust in their capabilities.

Predictive Analytics

In the AI-powered technological world of today, predictive analytics have become a powerful tool for high-performing applications. The same holds for its role and support in large language models. The analytics can identify patterns and relationships that can be incorporated into improved fine-tuning of LLMs, generating more relevant outputs.

Here’s a crash course to deepen your understanding of predictive analytics!

 

 

Chain-Of-Thought Prompting

It refers to a specific type of few-shot prompting that breaks down a problem into sequential steps for the model to follow. It enables LLMs to handle increasingly complex tasks with improved accuracy. Thus, chain-of-thought prompting improves the quality of responses and provides a better understanding of how the model arrived at a particular answer.

 

Read more about the role of chain-of-thought and zero-shot prompting in LLMs here

 

Zero-Shot Prompting

Zero-shot prompting unlocks new skills for LLMs without extensive training. By providing clear instructions through prompts, even complex tasks become achievable, boosting LLM versatility and efficiency. This approach not only reduces training costs but also pushes the boundaries of LLM capabilities, allowing us to explore their potential for new applications.

While these terms pop up when we talk about optimizing LLM performance, let’s dig deeper into the process and talk about some key concepts and practices that support enhanced LLM results.

Fine-Tuning LLMs

It is a powerful technique that improves LLM performance on specific tasks. It involves training a pre-trained LLM using a focused dataset for a relevant task, providing the application with domain-specific knowledge. It ensures that the model output is refined for that particular context, making your LLM application an expert in that area.

Here is a detailed guide that explores the role, methods, and impact of fine-tuning LLMs. While this provides insights into ways of fine-tuning an LLM application, another approach includes tuning specific LLM parameters. It is a more targeted approach, including various parameters like the model size, temperature, context window, and much more.

Moreover, among the many techniques of fine-tuning, Direct Preference Optimization (DPO) and Reinforcement Learning from Human Feedback (RLHF) are popular methods of performance enhancement. Here’s a quick glance at comparing the two ways for you to explore.

 

RLHF v DPO - optimizing large language models
A comparative analysis of RLHF and DPO – Read more and in detail here

 

Retrieval Augmented Generation (RAG)

RAG or retrieval augmented generation is a LLM optimization technique that particularly addresses the issue of hallucinations in LLMs. An LLM application can generate hallucinated responses when prompted with information not present in their training set, despite being trained on extensive data.

 

Learn all you need to know about Retrieval Augmented Generation

 

The solution with RAG creates a bridge over this information gap, offering a more flexible approach to adapting to evolving information. Here’s a guide to assist you in implementing RAG to elevate your LLM experience.

 

Advanced RAG to elevate large language models
A glance into the advanced RAG to elevate your LLM experience

 

Hence, with these two crucial approaches to enhance LLM performance, the question comes down to selecting the most appropriate one.

RAG and Fine-Tuning

Let me share two valuable resources that can help you answer the dilemma of choosing the right technique for LLM performance optimization.

RAG and Fine-Tuning

The blog provides a detailed and in-depth exploration of the two techniques, explaining the workings of a RAG pipeline and the fine-tuning process. It also focuses on explaining the role of these two methods in advancing the capabilities of LLMs.

RAG vs Fine-Tuning

Once you are hooked by the importance and impact of both methods, delve into the findings of this article that navigates through the RAG vs fine-tuning dilemma. With a detailed comparison of the techniques, the blog takes it a step ahead and presents a hybrid approach for your consideration as well.

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

While building and optimizing are crucial steps in the journey of developing LLM applications, evaluating large language models is an equally important aspect.

Evaluating LLMs

 

large language models - Enhance LLM performance
Evaluation process to enhance LLM performance

 

It is the systematic process of assessing an LLM’s performance, reliability, and effectiveness across various tasks. Usually, through a series of tests to gauge its strengths, weaknesses, and suitability for different applications, we can evaluate LLM performance.

It ensures that a large language model application shows the desired functionality while highlighting its areas of strengths and weaknesses. It is an effective way to determine which LLMs are best suited for specific tasks.

Learn more about the simple and easy techniques for evaluating LLMs.

 

 

Among the transforming trends of evaluating LLMs, some common aspects to consider during the evaluation process include:

  • Performance Metrics – It includes accuracy, fluency, and coherence to assess the quality of the LLM’s outputs
  • Generalization – It explores how well the LLM performs on unseen data, not just the data it was trained on
  • Robustness – It involves testing the LLM’s resilience against adversarial attacks or output manipulation
  • Ethical Considerations – It considers potential biases or fairness issues within the LLM’s outputs

Explore the top LLM evaluation methods you can use when testing your LLM applications. A key part of the process also involves understanding the challenges and risks associated with large language models.

Challenges and Risks of Large Language Models

Like any other technological tool or development, LLMs also carry certain challenges and risks in their design and implementation. Some common issues associated with LLMs include hallucinations in responses, high toxic probabilities, bias and fairness, data security threats, and lack of accountability.

However, the problems associated with LLMs do not go unaddressed. The answer lies in the best practices you can take on when dealing with LLMs to mitigate the risks, and also in implementing the large language model operations (also known as LLMOps) process that puts special focus on addressing the associated challenges.

Hence, it is safe to say that as you start your LLM journey, you must navigate through various aspects and stages of development and operation to get a customized and efficient LLM application. The key to it all is to take the first step towards your goal – the rest falls into place gradually.

Some Resources to Explore

To sum it up – here’s a list of some useful resources to help you kickstart your LLM journey!

  • A list of best large language models in 2024
  • An overview of the 20 key technical terms to make you well-versed in the LLM jargon
  • A blog introducing you to the top 9 YouTube channels to learn about LLMs
  • A list of the top 10 YouTube videos to help you kickstart your exploration of LLMs
  • An article exploring the top 5 generative AI and LLM bootcamps

Bonus Addition!

If you are unsure about bootcamps – here are some insights into their importance. The hands-on approach and real-time learning might be just the push you need to take your LLM journey to the next level! And it’s not too time-consuming, you’d know the most about LLMs in as much as 40 hours!

 

As we conclude our LLM exploration journey, take the next step and learn to build customized LLM applications with fellow enthusiasts in the field. Check out our in-person large language models BootCamp and explore the pathway to deepen your understanding of LLMs!
April 18, 2024

In the not-so-distant future, generative AI is poised to become as essential as the internet itself. This groundbreaking technology vows to transform our society by automating complex tasks within seconds. It also raises the need for you to master prompt engineering. Let’s explore how.

Harnessing generative AI’s potential requires mastering the art of communication with it. Imagine it as a brilliant but clueless individual, waiting for your guidance to deliver astonishing results. This is where prompt engineering steps in as the need of the hour.

 

Large language model bootcamp

 

Excited to explore some must-know prompting techniques and master prompt engineering? let’s dig in!

 

Pro-tip: If you want to pursue a career in prompt engineering, follow this comprehensive roadmap.

What makes prompt engineering critical?

First things first, what makes prompt engineering so important? What difference is it going to make?

The answer awaits:

 

Importance of prompt engineering
Importance of prompt engineering

 

How does prompt engineering work?

At the heart of AI’s prowess lies prompt engineering – the compass that steers models towards user-specific excellence. Without it, AI output remains a murky landscape.

There are different types of prompting techniques you can use:

 

7 types of techniques to master prompt engineering
7 types of prompting techniques to use

 

Let’s put your knowledge to test before we understand some principles for prompt engineering. Here’s a quick quiz for you to measure your understanding!

 

Let’s get a deeper outlook on different principles governing prompt engineering:

 

How generative AI and LLMs work

 

1. Be clear and specific

The clearer your prompts, the better the model’s results. Here’s how to achieve it.

  • Use delimiters: Delimiters, like square brackets […], angle brackets <…>, triple quotes “””, triple dashes —, and triple backticks “`, help define the structure and context of the desired output.
  • Separate text from the prompt: Clear separation between text and prompt enhances model comprehension. Here’s an example:

 

master prompt engineering

 

  • Ask for a structured output: Request answers in formats such as JSON, HTML, XML, etc.

 

master prompt engineering

 

2. Give the LLM time to think:

When facing a complex task, models often rush to conclusions. Here’s a better approach:

  • Specify the steps required to complete the task: Provide clear steps

 

master prompt engineering

 

  • Instruct the model to seek its own solution before reaching a conclusion: Sometimes, when you ask an LLM to verify if your solution is right or wrong, it simply presents a verdict that is not necessarily correct. To overcome this challenge, you can instruct the model to work out its own solution first.

3. Know the limitations of the model

While LLMs continue to improve, they have limitations. Exercise caution, especially with hypothetical scenarios. When you ask different generative AI models to provide information on hypothetical products or tools, they tend to do so as if they exist.

To illustrate this point, we asked Bard to provide information about a hypothetical toothpaste:

 

master prompt engineering

 

 

Read along to explore the two approaches used for prompting

 

4. Iterate, Iterate, Iterate

Rarely does a single prompt yield the desired results. Success lies in iterative refinement.

For step-by-step prompting techniques, watch this video tutorial.

 

 

The goal: To master prompt engineering

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

All in all, prompt engineering is the key to unlocking the full potential of generative AI. With the right guidance and techniques, you can harness this powerful technology to achieve remarkable results and shape the future of human-machine interaction.

April 15, 2024

While language models in generative AI focus on textual data, vision language models (VLMs) bridge the gap between textual and visual data. Before we explore Moondream 2, let’s understand VLMs better.

Understanding vision language models

VLMs combine computer vision (CV) and natural language processing (NLP), enabling them to understand and connect visual information with textual data.

Some key capabilities of VLMs include image captioning, visual question answering, and image retrieval. It learns these tasks by training on datasets that pair images with their corresponding textual description. There are several large vision language models available in the market including GPT-4v, LLaVA, and BLIP-2.

 

Large language model bootcamp

 

However, these are large vision models requiring heavy computational resources to produce effective results, and that too at slow inference speeds. The solution has been presented in the form of small VLMs that provide a balance between efficiency and performance.

In this blog, we will look deeper into Moondream 2, a small vision language model.

What is Moondream 2?

Moondream 2 is an open-source vision language model. With only 1.86 billion parameters, it is a tiny VLM with weights from SigLIP and Phi-1.5. It is designed to operate seamlessly on devices with limited computational resources.

 

Weights for Moondream 2
Weights for Moondream 2

 

Let’s take a closer look at the defined weights for Moondream2.

SigLIP (Sigmoid Loss for Language Image Pre-Training)

It is a newer and simpler method that helps the computer learn just by looking at pictures and their captions, one at a time, making it faster and more effective, especially when training with lots of data. It is similar to a CLIP (Contrastive Language–Image Pre-training) model.

However, Moondream 2 has replaced softmax loss in CLIP with a simple pairwise sigmoid loss. The change ensures better performance because sigmoid loss only focuses on image-text pairs. Without the need for a global view of all pairwise data within a batch, the process becomes faster and more efficient.

 

Learn computer vision using Python

 

Phi-1.5

It is a small language model with 1.3 billion parameters and transformer-based architecture. Developed by Microsoft, the model was trained on 30 billion words, including information from its predecessor, Phi-1 and 20 billion words artificially created by another AI model, GPT-3.5.

With its unique training method, Phi-1.5 has mastered different skills required of a language model, like understanding common sense, following complex instructions, comprehending language, and retaining information. Moreover, it even outperforms its larger counterparts.

A closer look into Moondream 2

It is the latest and updated version of the model previously known as Moondream 1. Below is a quick comparison of the two models, highlighting the basic parameters of improvement.

 

Comparing Moondream 1 and 2
Comparing Moondream 1 and 2

 

Like typical vision language models, Moondream 2 interprets the visual data to provide textual responses based on the information. Some demos included in its repository highlight its capabilities. Let’s look at these demos below:

Demo 1

Moondream 2 was provided with the following image:

 

Moondream demo 1

 

Based on this image, the VLM was asked some relevant questions.

Question: What is the girl doing?

Answer: The girl is sitting at a table and eating a large hamburger.

Question: What color is the girl’s hair?

Answer: The girl’s hair is white.

The interaction with Moondream 2 highlights that the VLM is capable of understanding the basic image properties like the girl’s hair color. Moreover, it can also interpret the actions of the actors in an image from their position in a specific instance.

Demo 2

The VLM was provided with another image.

 

Moondream demo 2

 

The demo focused on asking the following:

Question: What is this?

Answer: The image features a computer server rack, which is a large metal structure designed to hold and organize multiple computer components, such as motherboards, cooling systems, and other peripherals. The rack is filled with various computer parts, including multiple computer chips, wires, and other electronic components. The rack is placed on a carpeted floor, and there is a couch in the background, suggesting that the setup is likely in a living or working space.

Question: What is behind the stand?

Answer: There is a brick wall behind the stand.

The above demo highlights the ability of Moondream 2 to explore and interpret complex visual outputs in great detail. The VLM provides in-depth textual information from the visual data. It also presents spacial understanding of the image components.

Hence, Moondream 2 is a promising addition to the world of vision language models with its refined capabilities to interpret visual data and provide in-depth textual output. Since we understand the strengths of the VLM, it is time to explore its drawbacks or weaknesses.

 

Here’s a list of  7 books you must explore when learning about computer vision

 

Limitations of Moondream 2

Before you explore the world of Moondream 2, you must understand its limitations when dealing with visual and textual data.

Generating inaccurate statements

It is important to understand that Moondream 2 may generate inaccurate statements, especially for complex topics or situations requiring real-world understanding. The model might also struggle to grasp subtle details or hidden meanings within instructions.

Presenting unconscious bias

Like any other VLM, Moondream 2 is also a product of the data is it trained on. Thus, it can reflect the biases of the world, perpetuating stereotypes or discriminatory views.

As a user, it’s crucial to be aware of this potential bias and to approach the model’s outputs with a critical eye. Don’t blindly accept everything it generates; use your own judgment and fact-check when necessary.

Mirroring prompts

VLMs will reflect the prompts provided to them. Hence, if a user prompts the model to generate offensive or inappropriate content, the model may comply. It’s important to be mindful of the prompts and avoid asking the model to create anything harmful or hurtful.

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

In conclusion…

To sum it up, Moondream 2 is a promising step in the development of vision language models. Powered by its key components and compact size, the model is efficient and fast. However, like any language model we use nowadays, Moondream 2 also requires its users to be responsible for ensuring the creation of useful content.

If you are ready to experiment with Moondream 2 now, install the necessary files and start right away! Here’s a look at what the VLM’s user interface looks like.

April 9, 2024

Large Language Models are growing smarter, transforming how we interact with technology. Yet, they stumble over a significant quality i.e. accuracy. Often, they provide unreliable information or guess answers to questions they don’t understand—guesses that can be completely wrong. Read more

This issue is a major concern for enterprises looking to leverage LLMs. How do we tackle this problem? Retrieval Augmented Generation (RAG) offers a viable solution, enabling LLMs to access up-to-date, relevant information, and significantly improving their responses.

However, there are RAG framework challenges associated with the process. In this blog, we will explore the key RAG challenges in building LLM applications.

 

Tune in to our podcast and dive deep into RAG, fine-tuning, LlamaIndex and LangChain in detail!

 

Understanding Retrieval Augmented Generation (RAG)

RAG is a framework that retrieves data from external sources and incorporates it into the LLM’s decision-making process. This allows the model to access real-time information and address knowledge gaps. The retrieved data is synthesized with the LLM’s internal training data to generate a response.

 

Retrieval Augmented Generation (RAG) Pipeline

 

Read more: RAG and finetuning: A comprehensive guide to understanding the two approaches

 

RAG Challenges when Bringing LLM Applications to Production

Prototyping a RAG application is easy, but making it performant, robust, and scalable to a large knowledge corpus is hard.

There are three important steps in a RAG framework i.e. Data Ingestion, Retrieval, and Generation. In this blog, we will be dissecting the challenges encountered based on each stage of the RAG  pipeline specifically from the perspective of production, and then propose relevant solutions. Let’s dig in!

Stage 1: Data Ingestion Pipeline

The ingestion stage is a preparation step for building a RAG pipeline, similar to the data cleaning and preprocessing steps in a machine learning pipeline. Usually, the ingestion stage consists of the following steps:

  • Collect data
  • Chunk data
  • Generate vector embeddings of chunks
  • Store vector embeddings and chunks in a vector database

The efficiency and effectiveness of the data ingestion phase significantly influence the overall performance of the system.

Common Pain Points in Data Ingestion Pipeline

 

12 RAG Framework Challenges to Build Production-Ready LLM Applications | Data Science Dojo

 

Challenge 1: Data Extraction:

  • Parsing Complex Data Structures: Extracting data from various types of documents, such as PDFs with embedded tables or images, can be challenging. These complex structures require specialized techniques to extract the relevant information accurately.
  • Handling Unstructured Data: Dealing with unstructured data, such as free-flowing text or natural language, can be difficult.
Proposed solutions
  • Better parsing techniques:Enhancing parsing techniques is key to solving the data extraction challenge in RAG-based LLM applications, enabling more accurate and efficient information extraction from complex data structures like PDFs with embedded tables or images. Llama Parse is a great tool by LlamaIndex that significantly improves data extraction for RAG systems by adeptly parsing complex documents into structured markdown.
  • Chain-of-the-table approach:The chain-of-table approach, as detailed by Wang et al., https://arxiv.org/abs/2401.04398 merges table analysis with step-by-step information extraction strategies. This technique aids in dissecting complex tables to pinpoint and extract specific data segments, enhancing tabular question-answering capabilities in RAG systems.
  • Mix-Self-Consistency:
    Large Language Models (LLMs) can analyze tabular data through two primary methods:

    • Direct prompting for textual reasoning.
    • Program synthesis for symbolic reasoning, utilizing languages like Python or SQL.

    According to the study “Rethinking Tabular Data Understanding with Large Language Models” by Liu and colleagues, LlamaIndex introduced the MixSelfConsistencyQueryEngine. This engine combines outcomes from both textual and symbolic analysis using a self-consistency approach, such as majority voting, to attain state-of-the-art (SoTA) results. Below is an example code snippet. For further information, visit LlamaIndex’s complete notebook.

 

Large Language Models Bootcamp | LLM

 

Challenge 2: Picking the Right Chunk Size and Chunking Strategy:

  1. Determining the Right Chunk Size: Finding the optimal chunk size for dividing documents into manageable parts is a challenge. Larger chunks may contain more relevant information but can reduce retrieval efficiency and increase processing time. Finding the optimal balance is crucial.
  2. Defining Chunking Strategy: Deciding how to partition the data into chunks requires careful consideration. Depending on the use case, different strategies may be necessary, such as sentence-based or paragraph-based chunking.
Proposed Solutions:
  • Fine Tuning Embedding Models:

Fine-tuning embedding models plays a pivotal role in solving the chunking challenge in RAG pipelines, enhancing both the quality and relevance of contexts retrieved during ingestion.

By incorporating domain-specific knowledge and training on pertinent data, these models excel in preserving context, ensuring chunks maintain their original meaning.

This fine-tuning process aids in identifying the optimal chunk size, striking a balance between comprehensive context capture and efficiency, thus minimizing noise.

Additionally, it significantly curtails hallucinations—erroneous or irrelevant information generation—by honing the model’s ability to accurately identify and extract relevant chunks.

According to experiments conducted by Llama Index, fine-tuning your embedding model can lead to a 5–10% performance increase in retrieval evaluation metrics.

  • Use Case-Dependent Chunking

Use case-dependent chunking tailors the segmentation process to the specific needs and characteristics of the application. Different use cases may require different granularity in data segmentation:

    • Detailed Analysis: Some applications might benefit from very fine-grained chunks to extract detailed information from the data.
    • Broad Overview: Others might need larger chunks that provide a broader context, important for understanding general themes or summaries.
  • Embedding Model-Dependent Chunking

Embedding model-dependent chunking aligns the segmentation strategy with the characteristics of the underlying embedding model used in the RAG framework. Embedding models convert text into numerical representations, and their capacity to capture semantic information varies:

    • Model Capacity: Some models are better at understanding broader contexts, while others excel at capturing specific details. Chunk sizes can be adjusted to match what the model handles best.
    • Semantic Sensitivity: If the embedding model is highly sensitive to semantic nuances, smaller chunks may be beneficial to capture detailed semantics. Conversely, for models that excel at capturing broader contexts, larger chunks might be more appropriate.

Challenge 3: Creating a Robust and Scalable Pipeline:

One of the critical challenges in implementing RAG is creating a robust and scalable pipeline that can effectively handle a large volume of data and continuously index and store it in a vector database. This challenge is of utmost importance as it directly impacts the system’s ability to accommodate user demands and provide accurate, up-to-date information.

  1. Proposed Solutions
  • Building a modular and distributed system:

To build a scalable pipeline for managing billions of text embeddings, a modular and distributed system is crucial. This system separates the pipeline into scalable units for targeted optimization and employs distributed processing for parallel operation efficiency. Horizontal scaling allows the system to expand with demand, supported by an optimized data ingestion process and a capable vector database for large-scale data storage and indexing.

This approach ensures scalability and technical robustness in handling vast amounts of text embeddings.

Stage 2: Retrieval

Retrieval in RAG involves the process of accessing and extracting information from authoritative external knowledge sources, such as databases, documents, and knowledge graphs. If the information is retrieved correctly in the right format, then the answers generated will be correct as well. However, you know the catch. Effective retrieval is a pain, and you can encounter several issues during this important stage.

 

RAG Pain Paints and Solutions - Retrieval

 

Common Pain Points in Data Ingestion Pipeline

Challenge 1: Retrieved Data Not in Context

The RAG system can retrieve data that doesn’t qualify to bring relevant context to generate an accurate response. There can be several reasons for this.

  • Missed Top Rank Documents: The system sometimes doesn’t include essential documents that contain the answer in the top results returned by the system’s retrieval component.
  • Incorrect Specificity: Responses may not provide precise information or adequately address the specific context of the user’s query
  • Losing Relevant Context During Reranking: This occurs when documents containing the answer are retrieved from the database but fail to make it into the context for generating an answer.
Proposed Solutions:
  • Query Augmentation: Query augmentation enables RAG to retrieve information that is in context by enhancing the user queries with additional contextual details or modifying them to maximize relevancy. This involves improving the phrasing, adding company-specific context, and generating sub-questions that help contextualize and generate accurate responses
    • Rephrasing
    • Hypothetical document embeddings
    • Sub-queries
  • Tweak retrieval strategies: Llama Index offers a range of retrieval strategies, from basic to advanced, to ensure accurate retrieval in RAG pipelines. By exploring these strategies, developers can improve the system’s ability to incorporate relevant information into the context for generating accurate responses.
    • Small-to-big sentence window retrieval,
    • recursive retrieval
    • semantic similarity scoring.
  • Hyperparameter tuning for chunk size and similarity_top_k: This solution involves adjusting the parameters of the retrieval process in RAG models. More specifically, we can tune the parameters related to chunk size and similarity_top_k.
    The chunk_size parameter determines the size of the text chunks used for retrieval, while similarity_top_k controls the number of similar chunks retrieved.
    By experimenting with different values for these parameters, developers can find the optimal balance between computational efficiency and the quality of retrieved information.
  • Reranking: Reranking retrieval results before they are sent to the language model has proven to improve RAG systems’ performance significantly.
    By retrieving more documents and using techniques like CohereRerank, which leverages a reranker to improve the ranking order of the retrieved documents, developers can ensure that the most relevant and accurate documents are considered for generating responses. This reranking process can be implemented by incorporating the reranker as a postprocessor in the RAG pipeline.

Challenge 2: Task-Based Retrieval

If you deploy a RAG-based service, you should expect anything from the users and you should not just limit your RAG in production applications to only be highly performant for question-answering tasks.

Users can ask a wide variety of questions. Naive RAG stacks can address queries about specific facts, such as details on a company’s Diversity & Inclusion efforts in 2023 or the narrator’s activities at Google.

However, questions may also seek summaries (“Provide a high-level overview of this document”) or comparisons (“Compare X and Y”).

Different retrieval methods may be necessary for these diverse use cases.

Proposed Solutions
  • Query Routing: This technique involves retaining the initial user query while identifying the appropriate subset of tools or sources that pertain to the query. By routing the query to the suitable options, routing ensures that the retrieval process is fine-tuned to the specific tools or sources that are most likely to yield accurate and relevant information.

Challenge 3: Optimize the Vector DB to look for correct documents

The problem in the retrieval stage of RAG is about ensuring the lookup to a vector database effectively retrieves accurate documents that are relevant to the user’s query.

Hereby, we must address the challenge of semantic matching by seeking documents and information that are not just keyword matches, but also conceptually aligned with the meaning embedded within the user query.

Proposed Solutions:
  • Hybrid Search:

Hybrid search tackles the challenge of optimal document lookup in vector databases. It combines semantic and keyword searches, ensuring retrieval of the most relevant documents.

  • Semantic Search: Goes beyond keywords, considering document meaning and context for accurate results.
  • Keyword Search: Excellent for queries with specific terms like product codes, jargon, or dates.

Hybrid search strikes a balance, offering a comprehensive and optimized retrieval process. Developers can further refine results by adjusting weighting between semantic and keyword search. This empowers vector databases to deliver highly relevant documents, streamlining document lookup.

Challenge 4: Chunking Large Datasets

When we put large amounts of data into a RAG-based product we eventually have to parse and then chunk the data because when we retrieve info – we can’t really retrieve a whole pdf – but different chunks of it.

However, this can present several pain points.

  • Loss of Context: One primary issue is the potential loss of context when breaking down large documents into smaller chunks. When documents are divided into smaller pieces, the nuances and connections between different sections of the document may be lost, leading to incomplete representations of the content.
  • Optimal Chunk Size: Determining the optimal chunk size becomes essential to balance capturing essential information without sacrificing speed. While larger chunks could capture more context, they introduce more noise and require additional processing time and computational costs. On the other hand, smaller chunks have less noise but may not fully capture the necessary context.

Read more: Optimize RAG efficiency with LlamaIndex: The perfect chunk size

Proposed Solutions:
  • Document Hierarchies: This is a pre-processing step where you can organize data in a structured manner to improve information retrieval by locating the most relevant chunks of text.
  • Knowledge Graphs: Representing related data through graphs, enabling easy and quick retrieval of related information and reducing hallucinations in RAG systems.
  • Sub-document Summary: Breaking down documents into smaller chunks and injecting summaries to improve RAG retrieval performance by providing global context awareness.
  • Parent Document Retrieval: Retrieving summaries and parent documents in a recursive manner to improve information retrieval and response generation in RAG systems.
  • RAPTOR: RAPTOR recursively embeds, clusters, and summarizes text chunks to construct a tree structure with varying summarization levels. Read more
  • Recursive Retrieval: Retrieval of summaries and parent documents in multiple iterations to improve performance and provide context-specific information in RAG systems.

Challenge 5: Retrieving Outdated Content from the Database

Imagine a RAG app working perfectly for 100 documents. But what if a document gets updated? The app might still use the old info (stored as an “embedding”) and give you answers based on that, even though it’s wrong.

Proposed Solutions:
  • Meta-Data Filtering: It’s like a label that tells the app if a document is new or changed. This way, the app can always use the latest and greatest information.

Stage 3: Generation

While the quality of the response generated largely depends on how good the retrieval of information was, there still are tons of aspects you must consider. After all, the quality of the response and the time it takes to generate the response directly impacts the satisfaction of your user.

 

RAG Pain Points - Generation Stage

 

Challenge 1: Optimized Response Time for User

The prompt response to user queries is vital for maintaining user engagement and satisfaction.

Proposed Solutions:
  1. Semantic Caching: Semantic caching addresses the challenge of optimizing response time by implementing a cache system to store and quickly retrieve pre-processed data and responses. It can be implemented at two key points in an RAG system to enhance speed:
    • Retrieval of Information: The first point where semantic caching can be implemented is in retrieving the information needed to construct the enriched prompt. This involves pre-processing and storing relevant data and knowledge sources that are frequently accessed by the RAG system.
    • Calling the LLM: By implementing a semantic cache system, the pre-processed data and responses from previous interactions can be stored. When similar queries are encountered, the system can quickly access these cached responses, leading to faster response generation.

Challenge 2: Inference Costs

The cost of inference for large language models (LLMs) is a major concern, especially when considering enterprise applications.

Some of the factors that contribute to the inference cost of LLMs include context window size, model size, and training data.

Proposed Solutions:

  1. Minimum viable model for your use case: Not all LLMs are created equal. There are models specifically designed for tasks like question answering, code generation, or text summarization. Choosing an LLM with expertise in your desired area can lead to better results and potentially lower inference costs because the model is already optimized for that type of work.
  2. Conservative Use of LLMs in Pipeline: By strategically deploying LLMs only in critical parts of the pipeline where their advanced capabilities are essential, you can minimize unnecessary computational expenditure. This selective use ensures that LLMs contribute value where they’re most needed, optimizing the balance between performance and cost.

Challenge 3: Data Security

The problem of data security in RAG systems refers to the concerns and challenges associated with ensuring the security and integrity of Language Models LLMs used in RAG applications. As LLMs become more powerful and widely used, there are ethical and privacy considerations that need to be addressed to protect sensitive information and prevent potential abuses.

These include:

    • Prompt injection
    • Sensitive information disclosure
    • Insecure outputs

Proposed Solutions: 

  1. Multi-tenancy: Multi-tenancy is like having separate, secure rooms for each user or group within a large language model system, ensuring that everyone’s data is private and safe.It makes sure that each user’s data is kept apart from others, protecting sensitive information from being seen or accessed by those who shouldn’t.By setting up specific permissions, it controls who can see or use certain data, keeping the wrong hands off of it. This setup not only keeps user information private and safe from misuse but also helps the LLM follow strict rules and guidelines about handling and protecting data.
  1. NeMo Guardrails: NeMo Guardrails is an open-source security toolset designed specifically for language models, including large language models. It offers a wide range of programmable guardrails that can be customized to control and guide LLM inputs and outputs, ensuring secure and responsible usage in RAG systems.

Ensuring the Practical Success of the RAG Framework

This article explored key pain points associated with RAG systems, ranging from missing content and incomplete responses to data ingestion scalability and LLM security. For each pain point, we discussed potential solutions, highlighting various techniques and tools that developers can leverage to optimize RAG system performance and ensure accurate, reliable, and secure responses.

By addressing these challenges, RAG systems can unlock their full potential and become a powerful tool for enhancing the accuracy and effectiveness of LLMs across various applications.

March 29, 2024

Knowledge graphs and LLMs are the building blocks of the most recent advancements happening in the world of artificial intelligence (AI). Combining knowledge graphs (KGs) and LLMs produces a system that has access to a vast network of factual information and can understand complex language.

The system has the potential to use this accessibility to answer questions, generate textual outputs, and engage with other NLP tasks. This blog aims to explore the potential of integrating knowledge graphs and LLMs, navigating through the promise of revolutionizing AI.

Introducing knowledge graphs and LLMs

Before we understand the impact and methods of integrating KGs and LLMs, let’s visit the definition of the two concepts.

What are knowledge graphs (KGs)?

They are a visual web of information that focuses on connecting factual data in a meaningful manner. Each set of data is represented as a node with edges building connections between them. This representational storage of data allows a computer to recognize information and relationships between the data points.

KGs organize data to highlight connections and new relationships in a dataset. Moreover, it enabled improved search results as knowledge graphs integrate the contextual information to provide more relevant results.

 

Large language model bootcamp

What are large language models (LLMs)?

LLMs are a powerful tool within the world of AI using deep learning techniques for general-purpose language generation and other natural language processing (NLP) tasks. They train on massive amounts of textual data to produce human-quality texts.

Large language models have revolutionized human-computer interactions with the potential for further advancements. However, LLMs are limited in the factual grounding of their results. It makes LLMs able to produce high-quality and grammatically accurate results that can be factually inaccurate.

 

knowledge graphs and LLMs
An overview of knowledge graphs and LLMs – Source: arXiv

 

Combining KGs and LLMs

Within the world of AI and NLP, integrating the concepts of KGs and LLMs has the potential to open up new avenues of exploration. While knowledge graphs cannot understand language, they are good at storing factual data. Unlike KGs, LLMs excel in language understanding but lack factual grounding.

Combining the two entities brings forward a solution that addresses the weaknesses of both. The strengths of KGs and LLMs cover each concept’s limitations, producing more accurate and better-represented results.

Frameworks to combine KGs and LLMs

It is one thing to talk about combining knowledge graphs and large language models, implementing the idea requires planning and research. So far, researchers have explored three different frameworks aiming to integrate KGs and LLMs for enhanced outputs.

In this section, we will explore these three frameworks that are published as a paper in IEEE Transactions on Knowledge and Data Engineering.

 

Frameworks for integrating KGs and LLMs
Frameworks for integrating KGs and LLMs – Source: arXiv

 

KG-enhanced LLMs

This framework focuses on using knowledge graphs for training LLMs. The factual knowledge and relationship links in the KGs become accessible to the LLMs in addition to the traditional textual data during the training phase. A LLM can then learn from the information available in KGs.

As a result, LLMs can get a boost in factual accuracy and grounding by incorporating the data from KGs. It will also enable the models to fact-check the outputs and produce more accurate and informative results.

LLM-augmented KGs

This design shifts the structure of the first framework. Instead of KGs enhancing LLMs, they leverage the reasoning power of large language models to improve knowledge graphs. It makes LLMs smart assistants to improve the output of KGs, curating their information representation.

Moreover, this framework can leverage LLMs to find problems and inconsistencies in information connections of KGs. The high reasoning of LLMs also enables them to infer new relationships in a knowledge graph, enriching its outputs.

This builds a pathway to create more comprehensive and reliable knowledge graphs, benefiting from the reasoning and inference abilities of LLMs.

 

Explore data visualization – the best way to communicate

 

Synergized LLMs + KGs

This framework proposes a mutually beneficial relationship between the two AI components. Each entity works to improve the other through a feedback loop. It is designed in the form of a continuous learning cycle between LLMs and KGs.

It can be viewed as a concept that combines the two above-mentioned frameworks into a single design where knowledge graphs enhance language model outputs and LLMs analyze and improve KGs.

It results in a dynamic cycle where KGs and LLMs constantly improve each other. The iterative design of this integration framework leads to a more powerful and intelligent system overall.

While we have looked at the three different frameworks of integration of KGs and LLMs, the synergized LLMs + KGs is the most advanced approach in this field. It promises to unlock the full potential of both entities, supporting the creation of superior AI systems with enhanced reasoning, knowledge representation, and text generation capabilities.

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

Future of LLM and KG integration

Combining the powers of knowledge graphs and large language models holds immense potential in various fields. Some plausible possibilities are discussed below.

Educational revolution

With access to knowledge graphs, LLMs can generate personalized educational content for students, encompassing a wide range of subjects and topics. The data can be used to generate interactive lessons, provide detailed feedback, and answer questions with factual accuracy.

Enhancing scientific research

The integrated frameworks provide an ability to analyze vast amounts of scientific data, identify patterns, and even suggest new hypotheses. The combination has the potential to accelerate scientific research across various fields.

 

 

Intelligent customer service

With useful knowledge representations of KGs, LLMs can generate personalized and more accurate support. It will also enhance their ability to troubleshoot issues and offer improved recommendations, providing an intelligent customer experience to the users of any enterprise.

Thus, the integration of knowledge graphs and LLMs has the potential to boost the development of AI-powered tasks and transform the field of NLP.

March 28, 2024

Natural language processing (NLP) and large language models (LLMs) have been revolutionized with the introduction of transformer models. These refer to a type of neural network architecture that excels at tasks involving sequences.

While we have talked about the details of a typical transformer architecture, in this blog we will explore the different types of the models.

How to categorize transformer models?

Transformers ensure the efficiency of LLMs in processing information. Their role is critical to ensure improved accuracy, faster training on data, and wider applicability. Hence, it is important to understand the different model types available to choose the right one for your needs.

 

Large language model bootcamp

However, before we delve into the many types of transformer models, it is important to understand the basis of their classification.

Classification by transformer architecture

The most fundamental categorization of transformer models is done based on their architecture. The variations are designed to perform specific tasks or cater to the limitations of the base architecture. The very common model types under this category include encoder-only, decoder-only, and encoder-decoder transformers.

Categorization based on pre-training approaches

While architecture is a basic component of consideration, the training techniques are equally crucial components for transformers. Pre-training approaches refer to the techniques used to train a transformer on a general dataset before finetuning it to perform specific tasks.

Some common approaches that define classification under this category include Masked Language Models (MLMs), autoregressive models, and conditional transformers.

This presents a general outlook on classifying transformer models. While we now know the types present under each broader category, let’s dig deeper into each transformer model type.

 

Read in detail about transformer architectures

 

Architecture-based classification

 

Architecture of transformer models
The general architecture of transformer models

 

Encoder-only transformer

As the name suggests, this architectural type uses only the encoder part of the transformer, focusing on encoding the input sequence. For this model type, understanding the input sequence is crucial while generating an output sequence is not required.

Some common applications of an encoder-only transformer include:

Text classification

It is focused on classifying the input data based on defined parameters. It is often used in email spam filters to categorize incoming emails. The transformer model can also train over the patterns for effective filtration of unwanted messages.

Sentimental analysis

This feature makes it an appropriate choice for social media companies to analyze customer feedback and their emotion toward a service or product. It provides useful data insights, leading to the creation of effective strategies to enhance customer satisfaction.

Anomaly detection

It is particularly useful for finance companies. The analysis of financial transactions allows the timely detection of anomalies. Hence, possible fraudulent activities can be addressed promptly.

Other uses of an encoder-only transformer include question-answering, speech recognition, and image captioning.

Decoder-only transformer

It is a less common type of transformer model that uses only the decoder component to generate text sequences based on input prompts. The self-attention mechanism allows the model to focus on previously generated outputs in the sequence, enabling it to refine the output and create more contextually aware results.

Some common uses of decoder-only transformers include:

Text summarization

It can iteratively generate textual summaries of the input, focusing on including the important aspects of information.

Text generation

It builds on a provided prompt to generate relevant textual outputs. The results cover a diverse range of content types, like poems, codes, and snippets. It is capable of iterating the process to create connected and improved responses.

Chatbots

It is useful to handle conversational interactions via chatbots. The decoder can also consider previous conversations to formulate relevant responses.

 

Explore the role of attention mechanism in transformers

 

Encoder-decoder Transformer

This is a classic architectural type of transformer, efficiently handling sequence-to-sequence tasks, where you need to transform one type of sequence (like text) into another (like a translation or summary). An encoder processes the input sequence while a decoder is used to generate an output sequence.

Some common uses of an encoder-decoder transformer include:

Machine translation

Since the sequence is important at both the input and output, it makes this transformer model a useful tool for translation. It also considers contextual references and relationships between words in both languages.

Text summarization

While this use overlaps with that of a decoder-only transformer, text summarization differs from an encoder-decoder transformer due to its focus on the input sequence. It enables the creation of summaries that focus on relevant aspects of the text highlighted in an input prompt.

Question-answering

It is important to understand the question before providing a relevant answer. An encoder-decoder transformer allows this focus on both ends of the communication, ensuring each question is understood and answered appropriately.

This concludes our exploration of architecture-based transformer models. Let’s explore the classification from the lens of pre-training approaches.

Categorization based on pre-training approaches

While the architectural differences provide a basis for transformer types, the models can be further classified based on their techniques of pre-training.

Let’s explore the various transformer models segregated based on pre-training approaches.

Masked Language Models (MLMs)

Models with this pre-training approach are usually encoder-only in architecture. They are trained to predict a masked word in a sentence based on the contextual information of the surrounding words. The training enables these model types to become efficient in understanding language relationships.

Some common MLM applications are:

Boosting downstream NLP tasks

MLMs train on massive datasets, enabling the models to develop a strong understanding of language context and relationships between words. This knowledge enables MLM models to contribute and excel in diverse NLP applications.

General-purpose NLP tool

The enhanced learning, knowledge, and adaptability of MLMs make them a part of multiple NLP applications. Developers leverage this versatility of pre-trained MLMs to build a basis for different NLP tools.

Efficient NLP development

The pre-trained foundation of MLMs reduces the time and resources needed for the deployment of NLP applications. It promotes innovation, faster development, and efficiency.

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

Autoregressive models

Typically built using a decoder-only architecture, this pre-training model is used to generate sequences iteratively. It can predict the next word based on the previous one in the text you have written. Some common uses of autoregressive models include:

Text generation

The iterative prediction from the model enables it to generate different text formats. From codes and poems to musical pieces, it can create all while iteratively refining the output as well.

Chatbots

The model can also be utilized in a conversational environment, creating engaging and contextually relevant responses,

Machine translation

While encoder-decoder models are commonly used for translation tasks, some languages with complex grammatical structures are supported by autoregressive models.

Conditional transformer

This transformer model incorporates the additional information of a condition along with the main input sequence. It enables the model to generate highly specific outputs based on particular conditions, ensuring more personalized results.

Some uses of conditional transformers include:

Machine translation with adaptation

The conditional aspect enables the model to set the target language as a condition. It ensures better adjustment of the model to the target language’s style and characteristics.

Summarization with constraints

Additional information allows the model to generate summaries of textual inputs based on particular conditions.

Speech recognition with constraints

With the consideration of additional factors like speaker ID or background noise, the recognition process enhances to produce improved results.

Future of transformer model types

While numerous transformer model variations are available, the ongoing research promises their further exploration and growth. Some major points of further development will focus on efficiency, specialization for various tasks, and integration of transformers with other AI techniques.

Transformers can also play a crucial role in the field of human-computer interaction with their enhanced capabilities. The growth of transformers will definitely impact the future of AI. However, it is important to understand the uses of each variation of a transformer model before you choose the one that fits your requirements.

March 23, 2024

In the dynamic field of artificial intelligence, Large Language Models (LLMs) are groundbreaking innovations shaping how we interact with digital environments. These sophisticated models, trained on vast collections of text, have the extraordinary ability to comprehend and generate text that mirrors human language, powering a variety of applications from virtual assistants to automated content creation.

The essence of LLMs lies not only in their initial training but significantly in fine-tuning, a crucial step to refine these models for specialized tasks and ensure their outputs align with human expectations.

Introduction to finetuning

Finetuning LLMs involves adjusting pre-trained models to perform specific functions more effectively, enhancing their utility across different applications. This process is essential because, despite the broad knowledge base acquired through initial training, LLMs often require customization to excel in particular domains or tasks.

 

Explore the concept of finetuning in detail here

 

For instance, a model trained on a general dataset might need fine-tuning to understand the nuances of medical language or legal jargon, making it more relevant and effective in those contexts.

Enter Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO), two leading methodologies for finetuning LLMs. RLHF utilizes a sophisticated feedback loop, incorporating human evaluations and a reward model to guide the AI’s learning process.

On the other hand, DPO adopts a more straightforward approach, directly applying human preferences to influence the model’s adjustments. Both strategies aim to enhance model performance and ensure the outputs are in tune with user needs, yet they operate on distinct principles and methodologies.

 

Large language model bootcamp

This blog post aims to unfold the layers of RLHF and DPO, drawing a comparative analysis to elucidate their mechanisms, strengths, and optimal use cases.

Understanding these fine-tuning methods paves the path to deploying LLMs that not only boast high performance but also resonate deeply with human intent and preferences, marking a significant step towards achieving more intuitive and effective AI-driven solutions. 

Examples of how fine-tuning improves performance in practical applications

  • Customer Service Chatbots: Fine-tuning an LLM on customer service transcripts can enhance its ability to understand and respond to user queries accurately, improving customer satisfaction. 
  • Legal Document Analysis: By fine-tuning on legal texts, LLMs can become adept at navigating complex legal language, aiding in tasks like contract review or legal research. 
  • Medical Diagnosis Support: LLMs fine-tuned with medical data can assist healthcare professionals by providing more accurate information retrieval and patient interaction, thus enhancing diagnostic processes.

Delving into reinforcement learning from human feedback (RLHF)

Explanation of RLHF and its components

Reinforcement Learning from Human Feedback (RLHF) is a technique used to fine-tune AI models, particularly language models, to enhance their performance based on human feedback.

The core components of RLHF include the language model being fine-tuned, the reward model that evaluates the language model’s outputs, and the human feedback that informs the reward model. This process ensures that the language model produces outputs more aligned with human preferences.

Theoretical foundations of RLHF

RLHF is grounded in reinforcement learning, where the model learns from actions rather than from a static dataset.

Unlike supervised learning, where models learn from labeled data or unsupervised learning, where models identify patterns in data, reinforcement learning models learn from the consequences of their actions, guided by rewards. In RLHF, the “reward” is determined by human feedback, which signifies the model’s success in generating desirable outputs.

 

The RLHF process for finetuning LLMs
The RLHF process – Source: AI Changes Everything

 

Four-step process of RLHF

  1. Pretraining the language model with self-supervision

  • Data Gathering: The process begins by collecting a vast and diverse dataset, typically encompassing a wide range of topics, languages, and writing styles. This dataset serves as the initial training ground for the language model. 
  • Self-Supervised Learning: Using this dataset, the model undergoes self-supervised learning. Here, the model is trained to predict parts of the text given other parts. For instance, it might predict the next word in a sentence based on the previous words. This phase helps the model grasp the basics of language, including grammar, syntax, and some level of contextual understanding. 
  • Foundation Building: The outcome of this stage is a foundational model that has a general understanding of language. It can generate text and understand some context but lacks specialization or fine-tuning for specific tasks or preferences. 
  1. Ranking model’s outputs based on human feedback

  • Generation and Evaluation: Once pretraining is complete, the model starts generating text outputs, which are then evaluated by humans. This could involve tasks like completing sentences, answering questions, or engaging in dialogue. 
  • Scoring System: Human evaluators use a scoring system to rate each output. They consider factors like how relevant, coherent, or engaging the text is. This feedback is crucial as it introduces the model to human preferences and standards. 
  • Adjustment for Bias and Diversity: Care is taken to ensure the diversity of evaluators and mitigate biases in feedback. This helps in creating a balanced and fair assessment criterion for the model’s outputs. 

 

Here’s your guide to understanding LLMs

 

  1. Training a reward model to mimic human ratings

  • Modeling Human Judgment: The scores and feedback from human evaluators are then used to train a separate model, known as the reward model. This model aims to understand and predict the scores human evaluators would give to any piece of text generated by the language model. 
  • Feedback Loop: The reward model effectively creates a feedback loop. It learns to distinguish between high-quality and low-quality outputs based on human ratings, encapsulating the criteria humans use to judge the text. 
  • Iteration for Improvement: This step might involve several iterations of feedback collection and reward model adjustment to accurately capture human preferences. 
  1. Finetuning the language model using feedback from the reward model

  • Integration of Feedback: The insights gained from the reward model are used to fine-tune the language model. This involves adjusting the model’s parameters to increase the likelihood of generating text that aligns with the rewarded behaviors. 
  • Reinforcement Learning Techniques: Techniques such as Proximal Policy Optimization (PPO) are employed to methodically adjust the model. The model is encouraged to “explore” different ways of generating text but is “rewarded” more when it produces outputs that are likely to receive higher scores from the reward model. 
  • Continuous Improvement: This fine-tuning process is iterative and can be repeated with new sets of human feedback and reward model adjustments, continuously improving the language model’s alignment with human preferences. 

The iterative process of RLHF allows for continuous improvement of the language model’s outputs. Through repeated cycles of feedback and adjustment, the model refines its approach to generating text, becoming better at producing outputs that meet human standards of quality and relevance.

 

Using a reward model for finetuning LLMs
Using a reward model for finetuning LLMs – Source: nownextlater.ai

 

Exploring direct preference optimization (DPO)

Introduction to the concept of DPO as a direct approach

Direct Preference Optimization (DPO) represents a streamlined method for fine-tuning large language models (LLMs) by directly incorporating human preferences into the training process.

This technique simplifies the adaptation of AI systems to better meet user needs, bypassing the complexities associated with constructing and utilizing reward models.

Theoretical foundations of DPO

DPO is predicated on the principle that direct human feedback can effectively guide the development of AI behavior.

By directly using human preferences as a training signal, DPO simplifies the alignment process, framing it as a direct learning task. This method proves to be both efficient and effective, offering advantages over traditional reinforcement learning approaches like RLHF.

 

Finetuning LLMs using DPO
Finetuning LLMs using DPO – Source: Medium

 

Steps involved in the DPO process

  1. Training the language model through self-supervision

  • Data Preparation: The model starts with self-supervised learning, where it is exposed to a wide array of text data. This could include everything from books and articles to websites, encompassing a variety of topics, styles, and contexts. 
  • Learning Mechanism: During this phase, the model learns to predict text sequences, essentially filling in blanks or predicting subsequent words based on the preceding context. This method helps the model to grasp the fundamentals of language structure, syntax, and semantics without explicit task-oriented instructions. 
  • Outcome: The result is a baseline language model capable of understanding and generating coherent text, ready for further specialization based on specific human preferences. 
  1. Collecting pairs of examples and obtaining human ratings

  • Generation of Comparative Outputs: The model generates pairs of text outputs, which might vary in tone, style, or content focus. These pairs are then presented to human evaluators in a comparative format, asking which of the two better meets certain criteria such as clarity, relevance, or engagement. 
  • Human Interaction: Evaluators provide their preferences, which are recorded as direct feedback. This step is crucial for capturing nuanced human judgments that might not be apparent from purely quantitative data. 
  • Feedback Incorporation: The preferences gathered from this comparison form the foundational data for the next phase of optimization. This approach ensures that the model’s tuning is directly influenced by human evaluations, making it more aligned with actual user expectations and preferences. 
  1. Training the model using a cross-entropy-based loss function

  • Optimization Technique: Armed with pairs of examples and corresponding human preferences, the model undergoes fine-tuning using a binary cross-entropy loss function. This statistical method compares the model’s output against the preferred outcomes, quantifying how well the model’s predictions match the chosen preferences.

 

finetuning LLMs

 

  • Adjustment Process: The model’s parameters are adjusted to minimize the loss function, effectively making the preferred outputs more likely in future generations. This process iteratively improves the model’s alignment with human preferences, refining its ability to generate text that resonates with users. 
  1. Constraining the model to maintain its generativity

  • Balancing Act: While the model is being fine-tuned to align closely with human preferences, it’s vital to ensure that it doesn’t lose its generative diversity. The process involves carefully adjusting the model to incorporate feedback without overfitting to specific examples or restricting its creative capacity. 
  • Ensuring Flexibility: Techniques and safeguards are put in place to ensure the model remains capable of generating a wide range of responses. This includes regular evaluations of the model’s output diversity and implementing mechanisms to prevent the narrowing of its generative abilities. 
  • Outcome: The final model retains its ability to produce varied and innovative text while being significantly more aligned with human preferences, demonstrating an enhanced capability to engage users in a meaningful way. 

DPO eliminates the need for a separate reward model by treating the language model’s adjustment as a direct optimization problem based on human feedback. This simplification reduces the layers of complexity typically involved in model training, making the process more efficient and directly focused on aligning AI outputs with user preferences.

Comparative analysis: RLHF vs. DPO

After exploring both Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO), we’re now at a point where we can compare these two key methods used to fine-tune Large Language Models (LLMs). This side-by-side look aims to clarify the differences and help decide which method might be better for certain situations. 

Direct comparison

  • Training Efficiency: RLHF involves several steps, including pre-training, collecting feedback, training a reward model, and then fine-tuning. This process is detailed and requires a lot of computer power and setup time. On the other hand, DPO is simpler and more straightforward because it optimizes the model directly based on what people prefer, often leading to quicker results. 
  • Data Requirements: RLHF uses a variety of feedback, such as scores or written comments, which means it needs a wide range of input to train well. DPO, however, focuses on comparing pairs of options to see which one people like more, making it easier to collect the needed data. 
  • Model Performance: RLHF is very flexible and can be fine-tuned to perform well in complex situations by understanding detailed feedback. DPO is great for making quick adjustments to align with what users want, although it might not handle varied feedback as well as RLHF. 
  • Scalability: RLHF’s detailed process can make it hard to scale up due to its high computer resource needs. DPO’s simpler approach means it can be scaled more easily, which is particularly beneficial for projects with limited resources. 

Pros and cons

  • Advantages of RLHF: Its ability to work with many kinds of feedback gives RLHF an edge in tasks that need detailed customization. This makes it well-suited for projects that require a deep understanding and nuanced adjustments. 
  • Disadvantages of RLHF: The main drawback is its complexity and the need for a reward model, which makes it more demanding in terms of computational resources and setup. Also, the quality and variety of feedback can significantly influence how well the fine-tuning works. 
  • Advantages of DPO: DPO’s more straightforward process means faster adjustments and less demand on computational resources. It integrates human preferences directly, leading to a tight alignment with what users expect. 
  • Disadvantages of DPO: The main issue with DPO is that it might not do as well with tasks needing more nuanced feedback, as it relies on binary choices. Also, gathering a large amount of human-annotated data might be challenging.

 

Comparing the RLHF and DPO
Comparing the RLHF and DPO – Source: arxiv.org

 

Scenarios of application

  • Ideal Use Cases for RLHF: RLHF excels in scenarios requiring customized outputs, like developing chatbots or systems that need to understand the context deeply. Its ability to process complex feedback makes it highly effective for these uses. 
  • Ideal Use Cases for DPO: When you need quick AI model adjustments and have limited computational resources, DPO is the way to go. It’s especially useful for tasks like adjusting sentiments in text or decisions that boil down to yes/no choices, where its direct approach to optimization can be fully utilized.
Feature  RLHF  DPO 
Training Efficiency  Multi-step and computationally intensive due to the iterative nature and involvement of a reward model.  More straightforward and computationally efficient by directly using human preferences, often leading to faster convergence. 
Data Requirements  Requires diverse feedback, including numerical ratings and textual annotations, necessitating a comprehensive mix of responses.  Generally relies on pairs of examples with human ratings, simplifying the preference learning process with less complex input. 
Model Performance  Offers adaptability and nuanced influence, potentially leading to superior performance in complex scenarios.  Efficient in quickly aligning model outputs with user preferences but may lack flexibility for varied feedback. 
Scalability  May face scalability challenges due to computational demands but is robust across diverse tasks.  Easier to scale in terms of computational demands, suitable for projects with limited resources. 
Advantages  Flexible handling of diverse feedback types; suitable for detailed output shaping and complex tasks.  Simplified and rapid fine-tuning process; directly incorporates human preferences with fewer computational resources. 
Disadvantages  Complex setup and higher computational costs; quality and diversity of feedback can affect outcomes.  May struggle with complex feedback beyond binary choices; gathering a large amount of annotated data could be challenging. 
Ideal Use Cases  Best for tasks requiring personalized or tailored outputs, such as conversational agents or context-rich content generation.  Well-suited for projects needing quick adjustments and closely aligned with human preferences, like sentiment analysis or binary decision systems. 

 

Summarizing key insights and applications

As we wrap up our journey through the comparative analysis of Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) for fine-tuning Large Language Models (LLMs), a few key insights stand out.

Both methods offer unique advantages and cater to different needs in the realm of AI development. Here’s a recap and some guidance on choosing the right approach for your project. 

Recap of fundamental takeaways

  • RLHF is a detailed, multi-step process that provides deep customization potential through the use of a reward model. It’s particularly suited for complex tasks where nuanced feedback is crucial. 
  • DPO simplifies the fine-tuning process by directly applying human preferences, offering a quicker and less resource-intensive path to model optimization. 

Choosing the right finetuning method

The decision between RLHF and DPO should be guided by several factors: 

  • Task Complexity: If your project involves complex interactions or requires understanding nuanced human feedback, RLHF might be the better choice. For more straightforward tasks or when quick adjustments are needed, DPO could be more effective. 
  • Available Resources: Consider your computational resources and the availability of human annotators. DPO is generally less demanding in terms of computational power and can be more straightforward in gathering the necessary data. 
  • Desired Control Level: RLHF offers more granular control over the fine-tuning process, while DPO provides a direct route to aligning model outputs with user preferences. Evaluate how much control and precision you need in the fine-tuning process.

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

The future of finetuning LLMs

Looking ahead, the field of LLM fine-tuning is ripe for innovation. We can anticipate advancements that further streamline these processes, reduce computational demands, and enhance the ability to capture and apply complex human feedback.

Additionally, the integration of AI ethics into fine-tuning methods is becoming increasingly important, ensuring that models not only perform well but also operate fairly and without bias. As we continue to push the boundaries of what AI can achieve, the evolution of fine-tuning methods like RLHF and DPO will play a crucial role in making AI more adaptable, efficient, and aligned with human values.

By carefully considering the specific needs of each project and staying informed about advancements in the field, developers can leverage these powerful tools to create AI systems that are not only technologically advanced but also deeply attuned to the complexities of human communication and preferences.

March 22, 2024

This is the second blog in the series of RAG and finetuning, highlighting a detailed comparison of the two approaches.

 

You can read the first blog of the series here – A guide to understanding RAG and finetuning

 

While we provided a detailed guideline on understanding RAG and finetuning, a comparative analysis of the two provides a deeper insight. Let’s explore and address the RAG vs finetuning debate to determine the best tool to optimize LLM performance.

 

RAG vs finetuning LLM – A detailed comparison of the techniques

It’s crucial to grasp that these methodologies while targeting the enhancement of large language models (LLMs), operate under distinct paradigms. Recognizing their strengths and limitations is essential for effectively leveraging them in various AI applications.

This understanding allows developers and researchers to make informed decisions about which technique to employ based on the specific needs of their projects. Whether it’s adapting to dynamic information, customizing linguistic styles, managing data requirements, or ensuring domain-specific performance, each approach has its unique advantages.

By comprehensively understanding these differences, you’ll be equipped to choose the most suitable method—or a blend of both—to achieve your objectives in developing sophisticated, responsive, and accurate AI models.

 

Summarizing the RAG vs finetuning comparison
Summarizing the RAG vs finetuning comparison

 

Team RAG or team Fine-Tuning? Tune in to this podcast now to find out their specific benefits, trade-offs, use-cases, enterprise adoption, and more!

 

Adaptability to dynamic information

RAG shines in environments where information is constantly updated. By design, RAG leverages external data sources to fetch the latest information, making it inherently adaptable to changes.

This quality ensures that responses generated by RAG-powered models remain accurate and relevant, a crucial advantage for applications like real-time news summarization or updating factual content.

Fine-tuning, in contrast, optimizes a model’s performance for specific tasks through targeted training on a curated dataset.

While it significantly enhances the model’s expertise in the chosen domain, its adaptability to new or evolving information is constrained. The model’s knowledge remains as current as its last training session, necessitating regular updates to maintain accuracy in rapidly changing fields.

Customization and linguistic style

RAG‘s primary focus is on enriching responses with accurate, up-to-date information retrieved from external databases.

This process, though excellent for fact-based accuracy, means RAG models might not tailor their linguistic style as closely to specific user preferences or nuanced domain-specific terminologies without integrating additional customization techniques.

Fine-tuning excels in personalizing the model to a high degree, allowing it to mimic specific linguistic styles, adhere to unique domain terminologies, and align with particular content tones.

This is achieved by training the model on a dataset meticulously prepared to reflect the desired characteristics, enabling the fine-tuned model to produce outputs that closely match the specified requirements.

 

Large language model bootcamp

Data efficiency and requirements

RAG operates by leveraging external datasets for retrieval, thus requiring a sophisticated setup to manage and query these vast data repositories efficiently.

The model’s effectiveness is directly tied to the quality and breadth of its connected databases, demanding rigorous data management but not necessarily a large volume of labeled training data.

Fine-tuning, however, depends on a substantial, well-curated dataset specific to the task at hand.

It requires less external data infrastructure compared to RAG but relies heavily on the availability of high-quality, domain-specific training data. This makes fine-tuning particularly effective in scenarios where detailed, task-specific performance is paramount and suitable training data is accessible.

Efficiency and scalability

RAG is generally considered cost-effective and efficient for a wide range of applications, particularly because it can dynamically access and utilize information from external sources without the need for continuous retraining.

This efficiency makes RAG a scalable solution for applications requiring access to the latest information or coverage across diverse topics.

Fine-tuning demands a significant investment in time and resources for the initial training phase, especially in preparing the domain-specific dataset and computational costs.

However, once fine-tuned, the model can operate with high efficiency within its specialized domain. The scalability of fine-tuning is more nuanced, as extending the model’s expertise to new domains requires additional rounds of fine-tuning with respective datasets.

 

Explore further how to tune LLMs for optimal performance

 

Domain-specific performance

RAG demonstrates exceptional versatility in handling queries across a wide range of domains by fetching relevant information from its external databases.

Its performance is notably robust in scenarios where access to wide-ranging or continuously updated information is critical for generating accurate responses.

Fine-tuning is the go-to approach for achieving unparalleled depth and precision within a specific domain.

By intensively training the model on targeted datasets, fine-tuning ensures the model’s outputs are not only accurate but deeply aligned with the domain’s subtleties, making it ideal for specialized applications requiring high expertise.

Hybrid approach: Enhancing LLMs with RAG and finetuning

The concept of a hybrid model that integrates Retrieval-Augmented Generation (RAG) with fine-tuning presents an interesting advancement. This approach allows for the contextual enrichment of LLM responses with up-to-date information while ensuring that outputs are tailored to the nuanced requirements of specific tasks.

Such a model can operate flexibly, serving as either a versatile, all-encompassing system or as an ensemble of specialized models, each optimized for particular use cases.

In practical applications, this could range from customer service chatbots that pull the latest policy details to enrich responses and then tailor these responses to individual user queries, to medical research assistants that retrieve the latest clinical data for accurate information dissemination, adjusted for layman understanding.

The hybrid model thus promises not only improved accuracy by grounding responses in factual, relevant data but also ensures that these responses are closely aligned with specific domain languages and terminologies.

However, this integration introduces complexities in model management, potentially higher computational demands, and the need for effective data strategies to harness the full benefits of both RAG and fine-tuning.

Despite these challenges, the hybrid approach marks a significant step forward in AI, offering models that combine broad knowledge access with deep domain expertise, paving the way for more sophisticated and adaptable AI solutions.

Choosing the best approach: Finetuning, RAG, or hybrid

Choosing between fine-tuning, Retrieval-Augmented Generation (RAG), or a hybrid approach for enhancing a Large Language Model should consider specific project needs, data accessibility,  and the desired outcome alongside computational resources and scalability.

Fine-tuning is best when you have extensive domain-specific data and seek to tailor the LLM’s outputs closely to specific requirements, making it a perfect fit for projects like creating specialized educational content that adapts to curriculum changes. RAG, with its dynamic retrieval capability, suits scenarios where responses must be informed by the latest information, ideal for financial analysis tools that rely on current market data.

A hybrid approach merges these advantages, offering the specificity of fine-tuning with the contextual awareness of RAG, suitable for enterprises needing to keep pace with rapid information changes while maintaining deep domain relevance. As technology evolves, a hybrid model might offer the flexibility to adapt, providing a comprehensive solution that encompasses the strengths of both fine-tuning and RAG.

Evolution and future directions

As the landscape of artificial intelligence continues to evolve, so too do the methodologies and technologies at its core. Among these, Retrieval-Augmented Generation (RAG) and fine-tuning are experiencing significant advancements, propelling them toward new horizons of AI capabilities.

Advanced enhancements in RAG

Enhancing the retrieval-augmented generation pipeline

RAG has undergone significant transformations and advancements in each step of its pipeline. Each research paper on RAG introduces advanced methods to boost accuracy and relevance at every stage.

Let’s use the same query example from the basic RAG explanation: “What’s the latest breakthrough in renewable energy?”, to better understand these advanced techniques.

  • Pre-retrieval optimizations: Before the system begins to search, it optimizes the query for better outcomes. For our example, Query Transformations and Routing might break down the query into sub-queries like “latest renewable energy breakthroughs” and “new technology in renewable energy.” This ensures the search mechanism is fine-tuned to retrieve the most accurate and relevant information.

 

  • Enhanced retrieval techniques: During the retrieval phase, Hybrid Search combines keyword and semantic searches, ensuring a comprehensive scan for information related to our query. Moreover, by Chunking and Vectorization, the system breaks down extensive documents into digestible pieces, which are then vectorized. This means our query doesn’t just pull up general information but seeks out the precise segments of texts discussing recent innovations in renewable energy.

 

  • Post-retrieval refinements: After retrieval, Reranking and Filtering processes evaluate the gathered information chunks. Instead of simply using the top ‘k’ matches, these techniques rigorously assess the relevance of each piece of retrieved data. For our query, this could mean prioritizing a segment discussing a groundbreaking solar panel efficiency breakthrough over a more generic update on solar energy. This step ensures that the information used in generating the response directly answers the query with the most relevant and recent breakthroughs in renewable energy.

 

Through these advanced RAG enhancements, the system not only finds and utilizes information more effectively but also ensures that the final response to the query about renewable energy breakthroughs is as accurate, relevant, and up-to-date as possible.

Towards multimodal integration

RAG, traditionally focused on enhancing text-based language models by incorporating external data, is now also expanding its horizons towards a multimodal future.

Multimodal RAG integrates various types of data, such as images, audio, and video, alongside text, allowing AI models to generate responses that are not only informed by a vast array of textual information but also enriched by visual and auditory contexts.

This evolution signifies a move towards AI systems capable of understanding and interacting with the world more holistically, mimicking human-like comprehension across different sensory inputs.

 

Here’s your fundamental introduction to RAG

 

Advanced enhancements in finetuning

Parameter efficiency and LoRA

In parallel, fine-tuning is transforming more parameter-efficient methods. Fine-tuning large language models (LLMs) presents a unique challenge for AI practitioners aiming to adapt these models to specific tasks without the overwhelming computational costs typically involved.

One such innovative technique is Parameter-Efficient Fine-Tuning (PEFT), which offers a cost-effective and efficient method for fine-tuning such a model.

Techniques like Low-Rank Adaptation (LoRA) are at the forefront of this change, enabling fine-tuning to be accomplished with significantly less computational overhead. LoRA and similar approaches adjust only a small subset of the model’s parameters, making fine-tuning not only more accessible but also more sustainable.

Specifically, it introduces a low-dimensional matrix that captures the essence of the downstream task, allowing for fine-tuning with minimal adjustments to the original model’s weights.

This method exemplifies how cutting-edge research is making it feasible to tailor LLMs for specialized applications without the prohibitive computational cost typically associated.

The emergence of long-context LLMs

 

The evolution toward long context LLMs
The evolution toward long context LLMs – Source: Google Blog

 

As we embrace these advancements in RAG and fine-tuning, the recent introduction of Long Context LLMs, like Gemini 1.5 Pro, poses an intriguing question about the future necessity of these technologies. Gemini 1.5 Pro, for instance, showcases a remarkable capability with its 1 million token context window, setting a new standard for AI’s ability to process and utilize extensive amounts of information in one go.

The big deal here is how this changes the game for technologies like RAG and advanced fine-tuning. RAG was a breakthrough because it helped AI models to look beyond their training, fetching information from outside when needed, to answer questions more accurately. But now, with Long Context LLMs’ ability to hold so much information in memory, the question arises: Do we still need RAG anymore?

 

Explore a hands-on curriculum that helps you build custom LLM applications!

 

This doesn’t mean RAG and fine-tuning are becoming obsolete. Instead, it hints at an exciting future where AI can be both deeply knowledgeable, thanks to its vast memory, and incredibly adaptable, using technologies like RAG to fill in any gaps with the most current information.

In essence, Long Context LLMs could make AI more powerful by ensuring it has a broad base of knowledge to draw from, while RAG and fine-tuning techniques ensure that the AI remains up-to-date and precise in its answers. So the emergence of Long Context LLMs like Gemini 1.5 Pro does not diminish the value of RAG and fine-tuning but rather complements it.

 

 

Concluding Thoughts

The trajectory of AI, through the advancements in RAG, fine-tuning, and the emergence of long-context LLMs, reveals a future rich with potential. As these technologies mature, their combined interaction will make systems more adaptable, efficient, and capable of understanding and interacting with the world in ways that are increasingly nuanced and human-like.

The evolution of AI is not just a testament to technological advancement but a reflection of our continuous quest to create machines that can truly understand, learn from, and respond to the complex landscape of human knowledge and experience.

March 20, 2024

Vector embeddings have revolutionized the representation and processing of data for generative AI applications. The versatility of embedding tools has produced enhanced data analytics for its use cases.

In this blog, we will explore Google’s recent development of specialized embedding tools that particularly focus on promoting research in the fields of dermatology and pathology.

Let’s start our exploration with an overview of vector embedding tools.

What are vector embedding tools?

Vector embeddings are a specific embedding tool that uses vectors for data representation. While the direction of a vector determines its relationship with other data points in space, the length of a vector signifies the importance of the data point it represents.

A vector embedding tool processes input data by analyzing it and identifying key features of interest. The tool then assigns a unique vector to any data point based on its features. These are a powerful tool for the representation of complex datasets, allowing more efficient and faster data processing.

 

Large language model bootcamp

 

General embedding tools process a wide variety of data, capturing general features without focusing on specialized fields of interest. On the contrary, there are specialized embedding tools that enable focused and targeted data handling within a specific field of interest.

Specialized embedding tools are particularly useful in fields like finance and healthcare where unique datasets form the basis of information. Google has shared two specialized vector embedding tools, dealing with the demands of healthcare data processing.

However, before we delve into the details of these tools, it is important to understand their need in the field of medicine.

Why does healthcare need specialized embedding tools?

Embeddings are an important tool that enables ML engineers to develop apps that can handle multimodal data efficiently. These AI-powered applications using vector embeddings encompass various industries. While they deal with a diverse range of uses, some use cases require differentiated data-processing systems.

Healthcare is one such type of industry where specialized embedding tools can be useful for the efficient processing of data. Let’s explore major reasons for such differentiated use of embedding tools.

 

Explore the role of vector embeddings in generative AI

 

Domain-specific features

Medical data, ranging from patient history to imaging results, are crucial for diagnosis. These data sources, particularly from the field of dermatology and pathology, provide important information to medical personnel.

The slight variation of information in these sources requires specialized knowledge for the identification of relevant information patterns and changes. While regular embedding tools might fail at identifying the variations between normal and abnormal information, specialized tools can be created with proper training and contextual knowledge.

Data scarcity

While data is abundant in different fields and industries, healthcare information is often scarce. Hence, specialized embedding tools are needed to train on the small datasets with focused learning of relevant features, leading to enhanced performance in the field.

Focused and efficient data processing

The AI model must be trained to interpret particular features of interest from a typical medical image. This demands specialized tools that can focus on relevant aspects of a particular disease, assisting doctors in making accurate diagnoses for their patients.

In essence, specialized embedding tools bridge the gap between the vast amount of information within medical images and the need for accurate, interpretable diagnoses specific to each field in healthcare.

A look into Google’s embedding tools for healthcare research

The health-specific embedding tools by Google are focused on enhancing medical image analysis, particularly within the field of dermatology and pathology. This is a step towards addressing the challenge of developing ML models for medical imaging.

The two embedding tools – Derm Foundation and Path Foundation – are available for research use to explore their impact on the field of medicine and study their role in improving medical image analysis. Let’s take a look at their specific uses in the medical world.

Derm Foundation: A step towards redefining dermatology

It is a specialized embedding tool designed by Google, particularly for the field of dermatology within the world of medicine. It specifically focuses on generating embeddings from skin images, capturing the critical skin features that are relevant to diagnosing a skin condition.

The pre-training process of this specialized embedding tool consists of learning from a library of labeled skin images with detailed descriptions, such as diagnoses and clinical notes. The tool learns to identify relevant features for skin condition classification from the provided information, using it on future data to highlight similar features.

 

Derm Foundation outperforms BiT-M (a standard pre-trained image model)
Derm Foundation outperforms BiT-M (a standard pre-trained image model) – Source: Google Research Blog

 

Some common features of interest for derm foundation when analyzing a typical skin image include:

  • Skin color variation: to identify any abnormal pigmentation or discoloration of the skin
  • Textural analysis: to identify and differentiate between smooth, rough, or scaly textures, indicative of different skin conditions
  • Pattern recognition: to highlight any moles, rashes, or lesions that can connect to potential abnormalities

Potential use cases of the Derm Foundation

Based on the pre-training dataset and focus on analyzing skin-specific features, Derm Foundation embeddings have the potential to redefine the data-processing and diagnosing practices for dermatology. Researchers can use this tool to develop efficient ML models. Some leading potential use cases for these models include:

Early detection of skin cancer

Efficient identification of skin patterns and textures from images can enable dermatologists to timely detect skin cancer in patients. Early detection can lead to better treatments and outcomes overall.

Improved classification of skin diseases

Each skin condition, such as dermatitis, eczema, and psoriasis, shows up differently on a medical image. A specialized embedding tool empowers the models to efficiently detect and differentiate between different skin conditions, leading to accurate diagnoses and treatment plans.

Hence, the Derm Foundation offers enhanced accuracy in dermatological diagnoses, faster deployment of models due to the use of pre-trained embeddings, and focused analysis by dealing with relevant features. It is a step towards a more accurate and efficient diagnosis of skin conditions, ultimately improving patient care.

 

Here’s your guide to choosing the right vector embedding model for your generative AI use case

 

Path Foundation: Revamping the world of pathology in medical sciences

While the Derm Foundation was specialized to study and analyze skin images, the Path Foundation embedding is designed to focus on images from pathology.

 

An outlook of SSL training used by Path Foundation
An outlook of SSL training used by Path Foundation – Source: Google Research Blog

 

It analyzes the visual data of tissue samples, focusing on critical features that can include:

  • Cellular structures: focusing on cell size, shape, or arrangement to identify any possible diseases
  • Tumor classification: differentiating between different types of tumors or assessing their aggressiveness

The pre-training process of the Path Foundation embedding comprises of labeled pathology images along with detailed descriptions and diagnoses relevant to them.

 

Learn to build LLM applications

 

Potential use cases of the Path Foundation

Using the training dataset empowers the specialized embedding tool for efficient diagnoses in pathology. Some potential use cases within the field for this embedding tool include:

Improved cancer diagnosis

Improved analysis of pathology images can lead to timely detection of cancerous tissues. It will lead to earlier diagnoses and better patient outcomes.

Better pathology workflows

Analysis of pathology images is a time-consuming process that can be expedited with the use of an embedding tool. It will allow doctors to spend more time on complex cases while maintaining an improved workflow for their pathology diagnoses.

Thus, Path Foundation promises the development of pathology processes, supporting medical personnel in improved diagnoses and other medical processes.

Transforming healthcare with vector embedding tools

The use of embedding tools like Derm Foundation and Path Foundation has the potential to redefine data handling for medical processes. Specialized focus on relevant features offers enhanced diagnostic accuracy with efficient processes and workflows.

Moreover, the development of specialized ML models will address data scarcity often faced within healthcare when developing such solutions. It will also promote faster development of useful models and AI-powered solutions.

While the solutions will empower doctors to make faster and more accurate diagnoses, they will also personalize medicine for patients. Hence, embedding tools have the potential to significantly improve healthcare processes and treatments in the days to come.

March 19, 2024

This is the first blog in the series of RAG and finetuning, focusing on providing a better understanding of the two approaches.

RAG LLM and finetuning: You’ve likely seen these terms tossed around on social media, hailed as the next big leap in artificial intelligence. But what do they really mean, and why are they so crucial in the evolution of AI? 

To truly understand their significance, it’s essential to recognize the practical challenges faced by current language models, such as ChatGPT, renowned for their ability to mimic human-like text across essays, dialogues, and even poetry.

Yet, despite these impressive capabilities, their limitations became more apparent when tasked with providing up-to-date information on global events or expert knowledge in specialized fields.

Take, for instance, the FIFA World Cup.

 

Fifa World Cup Winner-Messi
Messi’s winning shot at the Fifa World Cup – Source: Economic Times

 

If you were to ask ChatGPT, “Who won the FIFA World Cup?” expecting details on the most recent tournament, you might receive an outdated response citing France as the champions despite Argentina’s triumphant victory in Qatar 2022.

 

ChatGPT's response to an inquiry of the winner of FIFA World Cup 2022
ChatGPT’s response to an inquiry about the winner of the FIFA World Cup 2022

 

Moreover, the limitations of AI models extend beyond current events to specialized knowledge domains. Try asking ChatGPT for treatments in neurodegenerative diseases, a highly specialized medical field. The model might offer generic advice based on its training data but lacks depth or specificity – and, most importantly, accuracy.

 

Symptoms of Parkinson's disease
Symptoms of Parkinson’s disease – Source: Neuro2go

 

GPT's response to inquiry about Parkinson's disease
GPT’s response to inquiry about Parkinson’s disease

 

These scenarios precisely illustrate the problem: a language model might generate text relevant to a past context or data but falls short when current or specialized knowledge is required.

 

Revisit the best large language models of 2023

 

Enter RAG and Finetuning

RAG revolutionizes the way language models access and use information. Incorporating a retrieval step allows these models to pull in data from external sources in real-time.

This means that when you ask a RAG-powered model a question, it doesn’t just rely on what it learned during training; instead, it can consult a vast, constantly updated external database to provide an accurate and relevant answer. This would bridge the gap highlighted by the FIFA World Cup example.

On the other hand, fine-tuning offers a way to specialize a general AI model for specific tasks or knowledge domains. Additional training on a focused dataset sharpens the model’s expertise in a particular area, enabling it to perform with greater precision and understanding.

This process transforms a jack-of-all-trades into a master of one, equipping it with the nuanced understanding required for tasks where generic responses just won’t cut it. This would allow it to perform as a seasoned medical specialist dissecting a complex case rather than a chatbot giving general guidelines to follow.

 

Curious about the LLM context augmentation approaches like RAG and fine-tuning and their benefits, trade-offs and use-cases? Tune in to this podcast with Co-founder and CEO of LlamaIndex now!


This blog will walk you through RAG and finetuning, unraveling how they work, why they matter, and how they’re applied to solve real-world problems. By the end, you’ll not only grasp the technical nuances of these methodologies but also appreciate their potential to transform AI systems, making them more dynamic, accurate, and context-aware.

 

Large language model bootcamp

 

Understanding the RAG LLM Duo

What is RAG?

Retrieval-augmented generation (RAG) significantly enhances how AI language models respond by incorporating a wealth of updated and external information into their answers. It could be considered a model consulting an extensive digital library for information as needed.

Its essence is in the name:  Retrieval, Augmentation, and Generation.

Retrieval

The process starts when a user asks a query, and the model needs to find information beyond its training data. It searches through a vast database that is loaded with the latest information, looking for data related to the user’s query.

Augmentation

Next, the information retrieved is combined, or ‘augmented,’ with the original query. This enriched input provides a broader context, helping the model understand the query in greater depth.

Generation

Finally, the language model generates a response based on the augmented prompt. This response is informed by the model’s training and the newly retrieved information, ensuring accuracy and relevance.

Why Use RAG?

Retrieval-augmented generation (RAG) brings an approach to natural language processing that’s both smart and efficient. It solved many problems faced by current LLMs, and that’s why it’s the most talked about technique in the NLP space.

Always Up-To-Date

RAG keeps answers fresh by accessing the latest information. RAG ensures the AI’s responses are current and correct in fields where facts and data change rapidly.

Sticks to the Facts

Unlike other models that might guess or make up details (a ” hallucinations ” problem), RAG checks facts by referencing real data. This makes it reliable, giving you answers based on actual information.

Flexible and Versatile

RAG is adaptable, working well across various settings, from chatbots to educational tools and more. It meets the need for accurate, context-aware responses in a wide range of uses, and that’s why it’s rapidly being adapted in all domains.

 

Explore the power of the RAG LLM duo for enhanced performance

 

Exploring the RAG Pipeline

To understand RAG further, consider when you interact with an AI model by asking a question like “What’s the latest breakthrough in renewable energy?”. This is when the RAG system springs into action. Let’s walk through the actual process.

 

A visual representation of a RAG pipeline
A visual representation of an RAG pipeline

 

Query Initiation and Vectorization

  • Your query starts as a simple string of text. However, computers, particularly AI models, don’t understand text and its underlying meanings the same way humans do. To bridge this gap, the RAG system converts your question into an embedding, also known as a vector.
  • Why a vector, you might ask? Well, A vector is essentially a numerical representation of your query, capturing not just the words but the meaning behind them. This allows the system to search for answers based on concepts and ideas, not just matching keywords.

Searching the Vector Database

  • With your query now in vector form, the RAG system seeks answers in an up-to-date vector database. The system looks for the vectors in this database that are closest to your query’s vector—the semantically similar ones, meaning they share the same underlying concepts or topics.

 

  • But what exactly is a vector database? 
    • Vector databases defined: A vector database stores vast amounts of information from diverse sources, such as the latest research papers, news articles, and scientific discoveries. However, it doesn’t store this information in traditional formats (like tables or text documents). Instead, each piece of data is converted into a vector during the ingestion process.
    • Why vectors?: This conversion to vectors allows the database to represent the data’s meaning and context numerically or into a language the computer can understand and comprehend deeply, beyond surface-level keywords.
    • Indexing: Once information is vectorized, it’s indexed within the database. Indexing organizes the data for rapid retrieval, much like an index in a textbook, enabling you to find the information you need quickly. This process ensures that the system can efficiently locate the most relevant information vectors when it searches for matches to your query vector.

 

  • The key here is that this information is external and not originally part of the language model’s training data, enabling the AI to access and provide answers based on the latest knowledge.

 

Selecting the Top ‘k’ Responses

  • From this search, the system selects the top few matches—let’s say the top 5. These matches are essentially pieces of information that best align with the essence of your question.
  • By concentrating on the top matches, the RAG system ensures that the augmentation enriches your query with the most relevant and informative content, avoiding information overload and maintaining the response’s relevance and clarity.

Augmenting the Query

  • Next, the information from these top matches is used to augment the original query you asked the LLM. This doesn’t mean the system simply piles on data. Instead, it integrates key insights from these top matches to enrich the context for generating a response. This step is crucial because it ensures the model has a broader, more informed base from which to draw when crafting its answer.

Generating the Response

  • Now comes the final step: generating a response. With the augmented query, the model is ready to reply. It doesn’t just output the retrieved information verbatim. Instead, it synthesizes the enriched data into a coherent, natural-language answer. For your renewable energy question, the model might generate a summary highlighting the most recent and impactful breakthrough, perhaps detailing a new solar panel technology that significantly increases power output. This answer is informative, up-to-date, and directly relevant to your query.

 

Learn to build LLM applications

 

Understanding Fine-Tuning

What is Fine-Tuning?

Fine-tuning could be likened to sculpting, where a model is precisely refined, like shaping marble into a distinct figure. Initially, a model is broadly trained on a diverse dataset to understand general patterns—this is known as pre-training. Think of pre-training as laying a foundation; it equips the model with a wide range of knowledge.

Fine-tuning, then, adjusts this pre-trained model and its weights to excel in a particular task by training it further on a more focused dataset related to that specific task. From training on vast text corpora, pre-trained LLMs, such as GPT or BERT, have a broad understanding of language.

Fine-tuning adjusts these models to excel in targeted applications, from sentiment analysis to specialized conversational agents.

Why Fine-Tune?

The breadth of knowledge LLMs acquire through initial training is impressive but often lacks the depth or specificity required for certain tasks. Fine-tuning addresses this by adapting the model to the nuances of a specific domain or function, enhancing its performance significantly on that task without the need to train a new model from scratch.

The Fine-Tuning Process

Fine-tuning involves several key steps, each critical to customizing the model effectively. The process aims to methodically train the model, guiding its weights toward the ideal configuration for executing a specific task with precision.

 

A look at the finetuning process
A look at the finetuning process

 

Selecting a Task

Identify the specific task you wish your model to perform better on. The task could range from classifying emails into spam or not spam to generating medical reports from patient notes.

Choosing the Right Pre-Trained Model

The foundation of fine-tuning begins with selecting an appropriate pre-trained large language model (LLM) such as GPT or BERT. These models have been extensively trained on large, diverse datasets, giving them a broad understanding of language patterns and general knowledge.

The choice of model is critical because its pre-trained knowledge forms the basis for the subsequent fine-tuning process. For tasks requiring specialized knowledge, like medical diagnostics or legal analysis, choose a model known for its depth and breadth of language comprehension.

Preparing the Specialized Dataset

For fine-tuning to be effective, the dataset must be closely aligned with the specific task or domain of interest. This dataset should consist of examples representative of the problem you aim to solve. For a medical LLM, this would mean assembling a dataset comprised of medical journals, patient notes, or other relevant medical texts.

The key here is to provide the model with various examples it can learn from. This data must represent the types of inputs and desired outputs you expect once the model is deployed.

Reprocess the Data

Before your LLM can start learning from this task-specific data, the data must be processed into a format the model understands. This could involve tokenizing the text, converting categorical labels into numerical format, and normalizing or scaling input features.

At this stage, data quality is crucial; thus, you’ll look out for inconsistencies, duplicates, and outliers, which can skew the learning process, and fix them to ensure cleaner, more reliable data.

After preparing this dataset, you divide it into training, validation, and test sets. This strategic division ensures that your model learns from the training set, tweaks its performance based on the validation set, and is ultimately assessed for its ability to generalize from the test set.

 

Read more about Finetuning LLMs

 

Adapting the Model for a Specific Task

Once the pre-trained model and dataset are ready, you must better tailor the model to suit your specific task. An LLM comprises multiple neural network layers, each learning different aspects of the data.

During fine-tuning, not every layer is tweaked—some represent foundational knowledge that applies broadly. In contrast, the top or later layers are more plastic and customized to align with the specific nuances of the task. The architecture requires two key adjustments:

  • Layer freezing: To preserve the general knowledge the model has gained during pre-training, freeze most of its layers, especially the lower ones closer to the input. This ensures the model retains its broad understanding while you fine-tune the upper layers to be more adaptable to the new task.
  • Output layer modification: Replace the model’s original output layer with a new one tailored to the number of categories or outputs your task requires. This involves configuring the output layer to classify various medical conditions accurately for a medical diagnostic task.

Fine-Tuning Hyperparameters

With the model’s architecture now adjusted, we turn your attention to hyperparameters. Hyperparameters are the settings and configurations that are crucial for controlling the training process. They are not learned from the data but are set before training begins and significantly impact model performance. Key hyperparameters in fine-tuning include:

  • Learning rate: Perhaps the most critical hyperparameter in fine-tuning. A lower learning rate ensures that the model’s weights are adjusted gradually, preventing it from “forgetting” its pre-trained knowledge.
  • Batch size:  The number of training examples used in one iteration. It affects the model’s learning speed and memory usage.
  • Epochs: The number of times the entire dataset is passed through the model. Enough epochs are necessary for learning, but too many can lead to overfitting.

Training Process

With the dataset prepared, the model was adapted, and the hyperparameters were set, so the model is now ready to be fine-tuned.

The training process involves repeatedly passing your specialized dataset through the model, allowing it to learn from the task-specific examples, it involves adjusting the model’s internal parameters, the weights, and biases of those fine-tuned layers so the output predictions get as close to the desired outcomes as possible.

This is done in iterations (epochs), and thanks to the pre-trained nature of the model, it requires fewer epochs than training from scratch.  Here is what happens in each iteration:

  • Forward pass: The model processes the input data, making predictions based on its current state.
  • Loss calculation: The difference between the model’s predictions and the actual desired outputs (labels) is calculated using a loss function. This function quantifies how well the model is performing.
  • Backward pass (Backpropagation): The gradients of the loss for each parameter (weight) in the model are computed. This indicates how the changes being made to the weights are affecting the loss. 
  • Update weights: Apply an optimization algorithm to update the model’s weights, focusing on those in unfrozen layers. This step is where the model learns from the task-specific data, refining its predictions to become more accurate.

A tight feedback loop where you incessantly monitor the model’s validation performance guides you in preventing overfitting and determining when the model has learned enough. It gives you an indication of when to stop the training.

Evaluation and Iteration

After fine-tuning, assess the model’s performance on a separate validation dataset. This helps gauge how well the model generalizes to new data. You do this by running the model against the test set—data it hadn’t seen during training.

Here, you look at metrics appropriate to the task, like BLEU and ROUGE for translation or summarization, or even qualitative evaluations by human judges, ensuring the model is ready for real-life application and isn’t just regurgitating memorized examples.

If the model’s performance is not up to par, you may need to revisit the hyperparameters, adjust the training data, or further tweak the model’s architecture.

For medical LLM applications, it is this entire process that enables the model to grasp medical terminologies, understand patient queries, and even assist in diagnosing from text descriptions—tasks that require deep domain knowledge.

 

You can read the second part of the blog series here – RAG vs finetuning: Which is the best tool?

 

Key Takeaways

Hence, this provides a comprehensive introduction to RAG and fine-tuning, highlighting their roles in advancing the capabilities of large language models (LLMs). Some key points to take away from this discussion can be put down as:

  • LLMs struggle with providing up-to-date information and excelling in specialized domains.
  • RAG addresses these limitations by incorporating external information retrieval during response generation, ensuring informative and relevant answers.
  • Fine-tuning refines pre-trained LLMs for specific tasks, enhancing their expertise and performance in those areas.
March 18, 2024

You need the right tools to fully unleash the power of generative AI. A vector embedding model is one such tool that is a critical component of AI applications for creating realistic text, images, and more.

In this blog, we will explore vector embedding models and the various parameters to be on the lookout for when choosing an appropriate model for your AI applications.

 

What are vector embedding models?

 

vector embedding models
The function of a vector embedding model

 

These act as data translators that can convert any data into a numerical code, specifically a vector of numbers. The model operates to create vectors that capture the meaning and semantic similarity between data objects. It results in the creation of a map that can be used to study data connections.

Moreover, the embedding models allow better control over the content and style of generated outputs, while dealing with multimodal data. Hence, it can deal with text, images, code, and other forms of data.

While we understand the role and importance of embedding models in the world of vector databases, the selection of the right model is crucial for the success of an AI application. Let’s dig deeper into the details of making the relevant choice.

 

Read more about embeddings as a building block for LLMs

 

Factors of consideration to make the right choice

Since a vector embedding model forms the basis of your generative AI application, your choice is crucial for its success.

 

Factors to consider when choosing a vector embedding model
Factors to consider when choosing a vector embedding model

 

Below are some key factors to consider when exploring your model options.

Use case and desired outcomes

In any choice, your goals and objectives are the most important aspect. The same holds true for your embedding model selection. The use case and outcomes of your generative AI application guide your choice of model.

The type of task you want your app to perform is a crucial factor as different models capture specific aspects of data. The tasks can range from text generation and summarization to code completion and more. You must be clear about your goal before you explore the available options.

Moreover, data characteristics are of equal importance. Your data type – text, code, or image – must be compatible with your data format.

Model characteristics

The particular model characteristics of consideration include its accuracy, latency, and scalability. Accuracy refers to the ability of the model to correctly capture data relationships, including semantic meaning, word order, and linguistic nuances.

Latency is another important property that caters to real-time interactions of the application, improving the model’s performance with reduced inference time. The size and complexity of data can impact this characteristic of an embedding model.

Moreover, to keep up with the rapidly advancing AI, it is important to choose a model that supports scalability. It also ensures that the model can cater to your growing dataset needs.

 

Large language model bootcamp

Practical factors

While app requirements and goals are crucial to your model choice, several practical aspects of the decision must also be considered. These primarily include computational resource requirements and cost of the model. While the former must match your data complexity, the latter should be within your specified budget.

Moreover, the available level of technical expertise also dictates your model choice. Since some vector embedding models require high technical expertise while others are more user-friendly, your strength of technical knowledge will determine your ease of use.

 

Here’s your guide to top vector databases in the market

 

While these considerations address the various aspects of your organization-level goals and application requirements, you must consider some additional benchmarks and evaluation factors. Considering these benchmarks completes the highly important multifaceted approach of model selection.

Curious about the future of LLMs and the role of vector embeddings in it? Tune in to our Future of Data and AI Podcast now! 

 

Benchmarks for evaluating vector embedding models

Here’s a breakdown of some key benchmarks you can leverage:

Internal evaluation

These benchmarks focus on the quality of the embeddings for all tasks. Some common metrics of this evaluation include semantic relationships between words, word similarity in the embedding space, and word clustering. All these metrics collectively determine the quality of connections between embeddings.

External evaluation

It keeps track of the performance of embeddings in a specific task. Following is a list of some of the metrics used for external evaluation:

ROUGE Score: It is called the Recall-Oriented Understudy for Gisting Evaluation. It deals with the performance of text summarization tasks, evaluating the overlap between generated and reference summaries.

BLEU Score: The Bilingual Evaluation Understudy, also called human evaluation measures the coherence and quality of outputs. This metric is particularly useful for tracking the quality of dialog generation.

MRR: It stands for Mean Reciprocal Rank. As the name suggests, it ranks the documents in the retrieved results based on their relevance.

 

MRR explained
A visual explanation of MRR – Source: Evidently AI

 

Benchmark Suites

The benchmark suites work by providing a standardized set of tasks and datasets to assess the models’ performance. It helps in making informed decisions as they highlight the strengths and weaknesses of of each model across a variety of tasks. Some common benchmark suites include:

BEIR (Benchmark for Evaluating Retrieval with BERT)

It focuses on information retrieval tasks by using a reference set that includes diverse information retrieval tasks such as question-answering, fact-checking, and entity retrieval. It provides datasets for retrieving relevant documents or passages based on a query, allowing for a comprehensive evaluation of a model’s capabilities.

MTEB (Massive Text Embedding Benchmark)

 

Outlook of the MTEB
An outlook of the MTEB – Source: Hugging Face

 

The MTEB leaderboard is available on Hugging Face. It expands on BEIR’s foundation with 58 datasets and covers 112 languages. It enables the evaluation of models against a wide range of linguistic contexts and use cases.

Its metrics and databases are suitable for tasks like text summarization, information retrieval, and semantic textual similarity, allowing you to see model performance on a broad range of tasks.

 

Learn to build LLM applications

 

Hence, the different factors, benchmark suites, evaluation models, and metrics collectively present a multi-faceted approach toward selecting a relevant vector embedding model. However, alongside these quantitative metrics, it is important to incorporate human judgment into the process.

 

 

The final word

In navigating the performance of your generative AI applications, the journey starts with choosing an appropriate vector embedding model. Since the model forms the basis of your app performance, you must consider all the relevant factors in making a decision.

While you explore the various evaluation metrics and benchmarks, you must also carefully analyze the instances of your application’s poor performance. It will help in understanding the embedding model’s weaknesses, enabling you to choose the most appropriate one that ensures high-quality outputs.

March 13, 2024

AI chatbots are transforming the digital world with increased efficiency, personalized interaction, and useful data insights. While Open AI’s GPT and Google’s Gemini are already transforming modern business interactions, Anthropic AI recently launched its newest addition, Claude 3.

This blog explores the latest developments in the world of AI with the launch of Claude 3 and discusses the relative position of Anthropic’s new AI tool to its competitors in the market.

Let’s begin by exploring the budding realm of Claude 3.

What is Claude 3?

It is the most recent advancement in large language models (LLMs) by Anthropic AI to its claude family of AI models. It is the latest version of the company’s AI chatbot with an enhanced ability to analyze and forecast data. The chatbot can understand complex questions and generate different creative text formats.

 

Read more about how LLMs make chatbots smarter

 

Among its many leading capabilities is its feature to understand and respond in multiple languages. Anthropic has emphasized responsible AI development with Claude 3, implementing measures to reduce related issues like bias propagation.

Introducing the members of the Claude 3 family

Since the nature of access and usability differs for people, the Claude 3 family comes with various options for the users to choose from. Each choice has its own functionality, varying in data-handling capabilities and performance.

The Claude 3 family consists of a series of three models called Haiku, Sonnet, and Opus.

 

Members of the Claude 3 family
Members of the Claude 3 family – Source: Anthropic

 

Let’s take a deeper look into each member and their specialties.

 

Haiku

It is the fastest and most cost-effective model of the family and is ideal for basic chat interactions. It is designed to provide swift responses and immediate actions to requests, making it a suitable choice for customer interactions, content moderation tasks, and inventory management.

However, while it can handle simple interactions speedily, it is limited in its capacity to handle data complexity. It falls short in generating creative texts or providing complex reasonings.

Sonnet

Sonnet provides the right balance between the speed of Haiku and the intelligence of Opus. It is a middle-ground model among this family of three with an improved capability to handle complex tasks. It is designed to particularly manage enterprise-level tasks.

Hence, it is ideal for data processing, like retrieval augmented generation (RAG) or searching vast amounts of organizational information. It is also useful for sales-related functions like product recommendations, forecasting, and targeted marketing.

Moreover, the Sonnet is a favorable tool for several time-saving tasks. Some common uses in this category include code generation and quality control.

 

Large language model bootcamp

 

Opus

Opus is the most intelligent member of the Claude 3 family. It is capable of handling complex tasks, open-ended prompts, and sight-unseen scenarios. Its advanced capabilities enable it to engage with complex data analytics and content generation tasks.

Hence, Opus is useful for R&D processes like hypothesis generation. It also supports strategic functions like advanced analysis of charts and graphs, financial documents, and market trends forecasting. The versatility of Opus makes it the most intelligent option among the family, but it comes at a higher cost.

Ultimately, the best choice depends on the specific required chatbot use. While Haiku is the best for a quick response in basic interactions, Sonnet is the way to go for slightly stronger data processing and content generation. However, for highly advanced performance and complex tasks, Opus remains the best choice among the three.

Among the competitors

While Anthropic’s Claude 3 is a step ahead in the realm of large language models (LLMs), it is not the first AI chatbot to flaunt its many functions. The stage for AI had already been set with ChatGPT and Gemini. Anthropic has, however, created its space among its competitors.

Let’s take a look at Claude 3’s position in the competition.

 

Claude-3-among-its-competitors-at-a-glance
Positioning Claude 3 among its competitors – Source: Anthropic

 

Performance Benchmarks

The chatbot performance benchmarks highlight the superiority of Claude 3 in multiple aspects. The Opus of the Claude 3 family has surpassed both GPT-4 and Gemini Ultra in industry benchmark tests. Anthropic’s AI chatbot outperformed its competitors in undergraduate-level knowledge, graduate-level reasoning, and basic mathematics.

Moreover, the Opus raises the benchmarks for coding, knowledge, and presenting a near-human experience. In all the mentioned aspects, Anthropic has taken the lead over its competition.

 

Comparing across multiple benchmarks
Comparing across multiple benchmarks – Source: Anthropic

For a deep dive into large language models, context windows, and content augmentation, watch this podcast now!

Data processing capacity

In terms of data processing, Claude 3 can consider much larger text at once when formulating a response, unlike the 64,000-word limit on GPT-4. Moreover, Opus from the Anthropic family can summarize up to 150,000 words while ChatGPT’s limit is around 3000 words for the same task.

It also possesses multimodal and multi-language data-handling capacity. When coupled with enhanced fluency and human-like comprehension, Anthropic’s Claude 3 offers better data processing capabilities than its competitors.

 

Learn to build LLM applications

Ethical considerations

The focus on ethics, data privacy, and safety makes Claude 3 stand out as a highly harmless model that goes the extra mile to eliminate bias and misinformation in its performance. It has an improved understanding of prompts and safety guardrails while exhibiting reduced bias in its responses.

Which AI chatbot to use?

Your choice relies on the purpose for which you need an AI chatbot. While each tool presents promising results, they outshine each other in different aspects. If you are looking for a factual understanding of language, Gemini is your go-to choice. ChatGPT, on the other hand, excels in creative text generation and diverse content creation.

However, striding in line with modern content generation requirements and privacy, Claude 3 has come forward as a strong choice. Alongside strong reasoning and creative capabilities, it offers multilingual data processing. Moreover, its emphasis on responsible AI development makes it the safest choice for your data.

To sum it up

Claude 3 emerges as a powerful LLM, boasting responsible AI, impressive data processing, and strong performance. While each chatbot excels in specific areas, Claude 3 shines with its safety features and multilingual capabilities. While access is limited now, Claude 3 holds promise for tasks requiring both accuracy and ingenuity. Whether it’s complex data analysis or crafting captivating poems, Claude 3 is a name to remember in the ever-evolving world of AI chatbots.

March 10, 2024

With the rapidly evolving technological world, businesses are constantly contemplating the debate of traditional vs vector databases. This blog delves into a detailed comparison between the two data management techniques.

In today’s digital world, businesses must make data-driven decisions to manage huge sets of information. Hence, databases are important for strategic data handling and enhanced operational efficiency.

However, before we dig deeper into the types of databases, let’s understand them better.

 

Understanding databases

Databases are a structured way to store and organize data effectively. It involves multiple data handling processes, like updating, deleting, or changing information. These are important for efficient data organization, security, and control.

Rules are put in place by databases to ensure data integrity and minimize redundancy. Moreover, organized storage of data facilitates data analysis, enabling retrieval of useful insights and data patterns. It also facilitates integration with different applications to enhance their functionality with organized access to data.

In data science, databases are important for data preprocessing, cleaning, and integration. Data scientists often rely on databases to perform complex queries and visualize data. Moreover, databases allow the storage of training datasets, facilitating model training and validation.

 

Read more about Understanding Databases

 

While databases are vital to data management, they have also developed over time. The changing technological world has led to a transition in available databases. Hence, the digital arena has gradually shifted from traditional to vector databases.

Since the shift is still underway, you can access both kinds of databases. However, it is important to understand the uses, limitations, and functions of both databases to understand which is more suitable for your organization. Let’s explore the arguments around the debate of traditional vs vector databases.

 

Large language model bootcamp

 

Exploring the traditional vs vector databases debate

In comparing the two categories of databases, we must explore a common set of factors to understand the basic differences between them. Hence, this blog will explore the debate from a few particular aspects, highlighting the characteristics of both traditional and vector databases in the process.

 

traditional vs vector databases
Traditional vs vector databases

 

Data models

Traditional databases:

They use a relational model that consists of a structured tabular form. Data is contained in tables divided into rows and columns. While each column represents a particular field, each row represents a single record within that field. Hence, the data is well-organized and maintains a well-defined relationship between different entities.

This relational data model holds a rigid schema, defining the structure of the data upfront. While it ensures high data integrity, it also makes the model inflexible in handling diverse and evolving data types.

Vector databases:

Instead of a relational row and column structure, vector databases use a vector-based model consisting of a multidimensional array of numbers. Each data point is stored as a vector in a three-dimensional space, representing different features and properties of data.

Unlike a traditional database, the vector representation is well-suited to store unstructured data. It also allows easier handling of complex data points, making it a versatile data model. Its flexible schema allows better adaptability but at the cost of data integrity.

Suggestion:

Based on the data models of both databases, it can be said that when making a choice, you must find the right balance between maintaining data integrity and flexible data-handling capabilities. Understanding your database requirements between these two properties will help you towards an accurate option.

 

Here’s your guide to top vector databases in the market

 

Query language

Traditional databases:

They rely on Structured Query Language (SQL), designed to navigate through relational databases. It provides a standardized way to interact with data, allowing data manipulation in the form of updating, inserting, deleting, and more.

It presents a highly focused method of addressing queries where data is filtered using exact matches, comparisons, and logical operators. SQL querying has long been present in the industry, hence it comes with a rich ecosystem of support.

Vector databases:

Unlike a declarative language like SQL, vector databases execute querying through API calls. These can vary based on the vector database you use. The APIs perform similarity searches and nearest-neighbor operations as part of the querying process.

The process is based on retrieving similar data points to a query from the multidimensional vector space. It leverages indexing and search techniques that are suitable for complex vector databases.

Suggestion:

Hence, query language specifications are highly particular to your choice of a database. You would have to rely on either SQL for traditional databases or work with API calls if you are dealing with vector spaces for data storage.

 

Learn to build LLM applications

 

Indexing techniques

Traditional databases:

 

Different data representation in a Hash and B-Tree Index
Different data representation in a Hash and B-Tree Index – Source: IT Tutorial

 

Indexing techniques for traditional databases include B-trees and hash indexes that are designed for structured data. B-trees is the most common method that organizes data in a hierarchical tree format. It assists in the efficient sorting and retrieval of data.

Hash indexes rely on hash functions to map data to particular locations in an index. On accessing this location, you can retrieve the actual data stored there. They are integral for point queries where exact matches are known.

Vector databases:

HNSW and IVF are indexing methods that specialize in handling vector databases. These differentiated techniques optimize similarity searches in high-dimensional vector data.

 

A visual representation of HNSW
A visual representation of HNSW – Source: Pinecone

 

HNSW stands for Hierarchical Navigable Small World which facilitates rapid proximity searches. It creates a multi-layer navigation graph to represent the vector space, creating a network of shortcuts to narrow down the search space to a small subset of similar vectors.

IVF or Inverted File Index divides the vector space into clusters and creates an inverted file for each cluster. A file records vectors that belong to each cluster. It enables comparison and detailed data search within clusters.

Both methods aim to enhance the similarity search in vector databases. While HNSW speeds up the process, IVF also increases its efficiency.

Suggestion:

While traditional indexing techniques optimize precise queries and efficient data manipulation in structured data, vector database methods are designed for similarity searches within high-dimensional data, handling complex queries such as nearest neighbor searches in machine learning applications.

 

Learn more about the mystery of indexing

 

Performance and scalability

Traditional databases:

These databases manage transactional workloads with a focus on data integrity (ACID compliance) and support complex querying capabilities. However, their performance is limited due to their design of vertical scalability, making it a costly and hardware-dependent process to handle large data volumes.

Vector databases:

Vector databases provide distinct performance advantages in environments requiring quick insights from large volumes of complex data, enabling efficient search operations. Moreover, its horizontal scalability design promotes the distribution of data management across multiple machines, making it a cost-effective process.

Suggestion:

Performance-based decisions can be made by finding the right balance between data integrity and flexible data handling, similar to the consideration of their data model differences. However, the horizontal and vertical scalability highlights that vector databases are more cost-efficient for large data volumes.

 

Use cases

Traditional databases:

They are ideal for applications that rely on structured data and require transactional safety while managing data records and performing complex queries. Some common use cases include financial systems, E-commerce platforms, customer relationship management (CRM), and human resource (HR) systems.

Vector databases:

They are useful for complex and multimodal datasets, often associated with complex machine learning (ML) tasks. Some important use cases include natural language processing (NLP), fraud detection, recommendation systems, and real-time personalization.

 

Understand tasks and techniques of natural language processing

 

Suggestion:

The differences in use cases highlight the varied strengths of both databases. You cannot undermine one over the other but understand both databases better to make the right choice for your data. Traditional databases remain the backbone for structured data while vector databases are better adapted for modern datasets.

 

 

The final verdict

Traditional databases are suitable for small or medium-sized datasets where retrieval of specific data is required from well-defined links of information. Vector databases, on the other hand, are better for large unstructured datasets with a focus on similarity searches.

Hence, the clash of databases can be seen as a tradition meeting innovation. Traditional databases excel in structured realms, while vector databases revolutionize with speed in high-dimensional data. The final verdict of making the right choice hinges on your specific use cases.

March 8, 2024

Related Topics

Statistics
Resources
rag
Programming
Machine Learning
LLM
Generative AI
Data Visualization
Data Security
Data Science
Data Engineering
Data Analytics
Computer Vision
Career
AI