Interested in a hands-on learning experience for developing LLM applications?
Join our LLM Bootcamp today and Get 30% Off for a Limited Time!

embedding tools

Vector embeddings have revolutionized the representation and processing of data for generative AI applications. The versatility of embedding tools has produced enhanced data analytics for its use cases.

In this blog, we will explore Google’s recent development of specialized embedding tools that particularly focus on promoting research in the fields of dermatology and pathology.

Let’s start our exploration with an overview of vector embedding tools.

What are vector embedding tools?

Vector embeddings are a specific embedding tool that uses vectors for data representation. While the direction of a vector determines its relationship with other data points in space, the length of a vector signifies the importance of the data point it represents.

A vector embedding tool processes input data by analyzing it and identifying key features of interest. The tool then assigns a unique vector to any data point based on its features. These are a powerful tool for the representation of complex datasets, allowing more efficient and faster data processing.

 

Large language model bootcamp

 

General embedding tools process a wide variety of data, capturing general features without focusing on specialized fields of interest. On the contrary, there are specialized embedding tools that enable focused and targeted data handling within a specific field of interest.

Specialized embedding tools are particularly useful in fields like finance and healthcare where unique datasets form the basis of information. Google has shared two specialized vector embedding tools, dealing with the demands of healthcare data processing.

However, before we delve into the details of these tools, it is important to understand their need in the field of medicine.

Why does healthcare need specialized embedding tools?

Embeddings are an important tool that enables ML engineers to develop apps that can handle multimodal data efficiently. These AI-powered applications using vector embeddings encompass various industries. While they deal with a diverse range of uses, some use cases require differentiated data-processing systems.

Healthcare is one such type of industry where specialized embedding tools can be useful for the efficient processing of data. Let’s explore major reasons for such differentiated use of embedding tools.

 

Explore the role of vector embeddings in generative AI

 

Domain-specific features

Medical data, ranging from patient history to imaging results, are crucial for diagnosis. These data sources, particularly from the field of dermatology and pathology, provide important information to medical personnel.

The slight variation of information in these sources requires specialized knowledge for the identification of relevant information patterns and changes. While regular embedding tools might fail at identifying the variations between normal and abnormal information, specialized tools can be created with proper training and contextual knowledge.

Data scarcity

While data is abundant in different fields and industries, healthcare information is often scarce. Hence, specialized embedding tools are needed to train on the small datasets with focused learning of relevant features, leading to enhanced performance in the field.

Focused and efficient data processing

The AI model must be trained to interpret particular features of interest from a typical medical image. This demands specialized tools that can focus on relevant aspects of a particular disease, assisting doctors in making accurate diagnoses for their patients.

In essence, specialized embedding tools bridge the gap between the vast amount of information within medical images and the need for accurate, interpretable diagnoses specific to each field in healthcare.

A look into Google’s embedding tools for healthcare research

The health-specific embedding tools by Google are focused on enhancing medical image analysis, particularly within the field of dermatology and pathology. This is a step towards addressing the challenge of developing ML models for medical imaging.

The two embedding tools – Derm Foundation and Path Foundation – are available for research use to explore their impact on the field of medicine and study their role in improving medical image analysis. Let’s take a look at their specific uses in the medical world.

Derm Foundation: A step towards redefining dermatology

It is a specialized embedding tool designed by Google, particularly for the field of dermatology within the world of medicine. It specifically focuses on generating embeddings from skin images, capturing the critical skin features that are relevant to diagnosing a skin condition.

The pre-training process of this specialized embedding tool consists of learning from a library of labeled skin images with detailed descriptions, such as diagnoses and clinical notes. The tool learns to identify relevant features for skin condition classification from the provided information, using it on future data to highlight similar features.

 

Derm Foundation outperforms BiT-M (a standard pre-trained image model)
Derm Foundation outperforms BiT-M (a standard pre-trained image model) – Source: Google Research Blog

 

Some common features of interest for derm foundation when analyzing a typical skin image include:

  • Skin color variation: to identify any abnormal pigmentation or discoloration of the skin
  • Textural analysis: to identify and differentiate between smooth, rough, or scaly textures, indicative of different skin conditions
  • Pattern recognition: to highlight any moles, rashes, or lesions that can connect to potential abnormalities

Potential use cases of the Derm Foundation

Based on the pre-training dataset and focus on analyzing skin-specific features, Derm Foundation embeddings have the potential to redefine the data-processing and diagnosing practices for dermatology. Researchers can use this tool to develop efficient ML models. Some leading potential use cases for these models include:

Early detection of skin cancer

Efficient identification of skin patterns and textures from images can enable dermatologists to timely detect skin cancer in patients. Early detection can lead to better treatments and outcomes overall.

Improved classification of skin diseases

Each skin condition, such as dermatitis, eczema, and psoriasis, shows up differently on a medical image. A specialized embedding tool empowers the models to efficiently detect and differentiate between different skin conditions, leading to accurate diagnoses and treatment plans.

Hence, the Derm Foundation offers enhanced accuracy in dermatological diagnoses, faster deployment of models due to the use of pre-trained embeddings, and focused analysis by dealing with relevant features. It is a step towards a more accurate and efficient diagnosis of skin conditions, ultimately improving patient care.

 

Here’s your guide to choosing the right vector embedding model for your generative AI use case

 

Path Foundation: Revamping the world of pathology in medical sciences

While the Derm Foundation was specialized to study and analyze skin images, the Path Foundation embedding is designed to focus on images from pathology.

 

An outlook of SSL training used by Path Foundation
An outlook of SSL training used by Path Foundation – Source: Google Research Blog

 

It analyzes the visual data of tissue samples, focusing on critical features that can include:

  • Cellular structures: focusing on cell size, shape, or arrangement to identify any possible diseases
  • Tumor classification: differentiating between different types of tumors or assessing their aggressiveness

The pre-training process of the Path Foundation embedding comprises of labeled pathology images along with detailed descriptions and diagnoses relevant to them.

 

Learn to build LLM applications

 

Potential use cases of the Path Foundation

Using the training dataset empowers the specialized embedding tool for efficient diagnoses in pathology. Some potential use cases within the field for this embedding tool include:

Improved cancer diagnosis

Improved analysis of pathology images can lead to timely detection of cancerous tissues. It will lead to earlier diagnoses and better patient outcomes.

Better pathology workflows

Analysis of pathology images is a time-consuming process that can be expedited with the use of an embedding tool. It will allow doctors to spend more time on complex cases while maintaining an improved workflow for their pathology diagnoses.

Thus, Path Foundation promises the development of pathology processes, supporting medical personnel in improved diagnoses and other medical processes.

Transforming healthcare with vector embedding tools

The use of embedding tools like Derm Foundation and Path Foundation has the potential to redefine data handling for medical processes. Specialized focus on relevant features offers enhanced diagnostic accuracy with efficient processes and workflows.

Moreover, the development of specialized ML models will address data scarcity often faced within healthcare when developing such solutions. It will also promote faster development of useful models and AI-powered solutions.

While the solutions will empower doctors to make faster and more accurate diagnoses, they will also personalize medicine for patients. Hence, embedding tools have the potential to significantly improve healthcare processes and treatments in the days to come.

March 19, 2024

Related Topics

Statistics
Resources
rag
Programming
Machine Learning
LLM
Generative AI
Data Visualization
Data Security
Data Science
Data Engineering
Data Analytics
Computer Vision
Career
AI